Contact sites between both mitochondrial membranes play a predominant role in the transport of nuclear-coded precursor proteins into mitochondria. The characterization of contact sites was greatly advanced by the reversible accumulation of precursor proteins in transit (translocation intermediates). It was found that the sites are saturable, apparently contain proteinaceous components and mediate extensive unfolding of the polypeptide chain in translocation. Some components of mitochondrial contact sites are currently being identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2728(90)90257-5DOI Listing

Publication Analysis

Top Keywords

contact sites
16
precursor proteins
8
contact
4
sites inner
4
inner outer
4
outer membranes
4
membranes structure
4
structure role
4
role protein
4
protein translocation
4

Similar Publications

[Retrospective analysis in children with vaccination granuloma].

Dermatologie (Heidelb)

January 2025

Department of Dermatology and Allergy, Klinikum rechts der Isar, Technical University, München, Deutschland.

Background: Vaccine granulomas are a common (0.3-1%) adverse event (AE) of (accidentally) subcutaneously administered vaccines and specific immunotherapies containing aluminum conjugates. The clinical symptoms with persistent itching subcutaneous nodules, predominantly affect infants and young children on the lateral thigh.

View Article and Find Full Text PDF

Figure-eight macrocycles represent a fascinating class of π-conjugated units characterized by unique aesthetics and non-contact molecular crossing at the center. Despite progress in synthesis over the past century, research into inorganic, organic, and polymeric figure-eight materials remains in its infancy. Here we report the first examples of figure-eight covalent organic frameworks by condensing figure-eight knots to create extended porous figure-eight π architectures.

View Article and Find Full Text PDF

Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted.

Nature

January 2025

School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.

Tissue-resident memory CD8 T (T) cells provide protection from infection at barrier sites. In the small intestine, T cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential. However, the origins of this diversity remain unknown.

View Article and Find Full Text PDF

Phosphoproteomic analysis of X-ray-irradiated planarians provides novel insights into the DNA damage response.

Int J Biol Macromol

January 2025

College of Life Science, Henan Normal University, Xinxiang 453007, Henan Province, PR China. Electronic address:

Phosphorylation plays a crucial role in the cellular response to radiation and cancer therapies, yet phosphoproteomics studies in planarians remain underexplored despite the organism's remarkable regenerative capacities. This study utilized advanced ion mobility mass spectrometry for 4D-label-free quantitative proteomics to identify phosphorylation sites associated with irradiation in planarians. A total of 33,284 phosphorylation sites from 15,505 phosphorylated peptides and 4710 unique phosphoproteins were identified.

View Article and Find Full Text PDF

Insight into nitrogen transformation during the binary NaOH-NaCO molten salt thermal treatment of waste tires.

Waste Manag

January 2025

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Molten salt thermal treatment of solid waste is a promising way for energy recovery and pollutant removal. However, the migration of nitrogen during pyrolysis of waste tires poses a challenge for cleaner production. This study investigated nitrogen conversion pathways during waste tires pyrolysis using a binary NaOH-NaCO salt at 425, 500, and 575 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!