Genes that confer the identity of the renin cell.

J Am Soc Nephrol

Harrison Distinguished Professor of Pediatrics and Biology, University of Virginia, 409 Lane Road, MR4 Building, Room 2001, Charlottesville, VA 22908, USA.

Published: December 2011

Renin-expressing cells modulate BP, fluid-electrolyte homeostasis, and kidney development, but remarkably little is known regarding the genetic regulatory network that governs the identity of these cells. Here we compared the gene expression profiles of renin cells with most cells in the kidney at various stages of development as well as after a physiologic challenge known to induce the transformation of arteriolar smooth muscle cells into renin-expressing cells. At all stages, renin cells expressed a distinct set of genes characteristic of the renin phenotype, which was vastly different from other cell types in the kidney. For example, cells programmed to exhibit the renin phenotype expressed Akr1b7, and maturing cells expressed angiogenic factors necessary for the development of the kidney vasculature and RGS (regulator of G-protein signaling) genes, suggesting a potential relationship between renin cells and pericytes. Contrary to the plasticity of arteriolar smooth muscle cells upstream from the glomerulus, which can transiently acquire the embryonic phenotype in the adult under physiologic stress, the adult juxtaglomerular cell always possessed characteristics of both smooth muscle and renin cells. Taken together, these results identify the gene expression profile of renin-expressing cells at various stages of maturity, and suggest that juxtaglomerular cells maintain properties of both smooth muscle and renin-expressing cells, likely to allow the rapid control of body fluids and BP through both contractile and endocrine functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3279933PMC
http://dx.doi.org/10.1681/ASN.2011040401DOI Listing

Publication Analysis

Top Keywords

renin-expressing cells
16
renin cells
16
smooth muscle
16
cells
15
gene expression
8
arteriolar smooth
8
muscle cells
8
cells stages
8
cells expressed
8
renin phenotype
8

Similar Publications

APOL1 Modulates Renin-Angiotensin System.

Biomolecules

December 2024

Department of Medicine and Feinstein Institute for Medical Research, Zucker School of Medicine, Hempstead, NY 11549, USA.

Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin-angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels).

View Article and Find Full Text PDF

Definitive Evidence for the Identification and Function of Renin-Expressing Cholinergic Neurons in the Nucleus Ambiguus.

Hypertension

February 2025

Department of Physiology (E.M.F., J.G., M.G., K.K., P.C.M., A.H.G., I.V., M.X., A.G., D.G., N.M.M., K.-T.L., K.K.W., D.T.B., G.C.M., M.R.H., J.L.S., J.L.G., C.D.S., P.N.), Medical College of Wisconsin, Milwaukee.

Background: The importance of the brain renin-angiotensin system in cardiovascular function is well accepted. However, not knowing the precise source of renin in the brain has been a limitation toward a complete understanding of how the brain renin-angiotensin system operates.

Methods: Highly sensitive in situ hybridization techniques and conditional knockout mice were used to address the location and function of renin in the brainstem.

View Article and Find Full Text PDF

Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Forkhead box D1-positive (Foxd1) stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.

View Article and Find Full Text PDF
Article Synopsis
  • Renin-expressing juxtaglomerular (JG) cells have a mechanism that senses pressure and regulates renin release based on changes in blood flow.
  • The study investigates whether Piezo2 receptors, known for their role in detecting touch, play a role in controlling renin synthesis and release in JG cells.
  • Results show that Piezo2 channels are not necessary for renin release or synthesis in JG cells under normal or stressed conditions, suggesting that other mechanisms need to be identified.
View Article and Find Full Text PDF

Inhibition of Renin Expression Is Regulated by an Epigenetic Switch From an Active to a Poised State.

Hypertension

September 2024

Department of Pediatrics, Child Health Research Center (J.P.S., R.P., S.M., M.L.S.S.-L., R.A.G.), University of Virginia, Charlottesville, VA.

Background: Renin-expressing cells are myoendocrine cells crucial for the maintenance of homeostasis. Renin is regulated by cAMP, p300 (histone acetyltransferase p300)/CBP (CREB-binding protein), and Brd4 (bromodomain-containing protein 4) proteins and associated pathways. However, the specific regulatory changes that occur following inhibition of these pathways are not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!