Large scale and structurally complex volume datasets from high-resolution 3D imaging devices or computational simulations pose a number of technical challenges for interactive visual analysis. In this paper, we present the first integration of a multiscale volume representation based on tensor approximation within a GPU-accelerated out-of-core multiresolution rendering framework. Specific contributions include (a) a hierarchical brick-tensor decomposition approach for pre-processing large volume data, (b) a GPU accelerated tensor reconstruction implementation exploiting CUDA capabilities, and (c) an effective tensor-specific quantization strategy for reducing data transfer bandwidth and out-of-core memory footprint. Our multiscale representation allows for the extraction, analysis and display of structural features at variable spatial scales, while adaptive level-of-detail rendering methods make it possible to interactively explore large datasets within a constrained memory footprint. The quality and performance of our prototype system is evaluated on large structurally complex datasets, including gigabyte-sized micro-tomographic volumes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2011.214DOI Listing

Publication Analysis

Top Keywords

tensor reconstruction
8
structurally complex
8
memory footprint
8
interactive multiscale
4
multiscale tensor
4
reconstruction multiresolution
4
volume
4
multiresolution volume
4
volume visualization
4
large
4

Similar Publications

Purpose: To improve the current method for MRI turbulence quantification which is the intravoxel phase dispersion (IVPD) method. Turbulence is commonly characterized by the Reynolds stress tensor (RST) which describes the velocity covariance matrix. A major source for systematic errors in MRI is the sequence's sensitivity to the variance of the derivatives of velocity, such as the acceleration variance, which can lead to a substantial measurement bias.

View Article and Find Full Text PDF

Imaging the entire cardiomyocyte network in entire small animal hearts at single cell resolution is a formidable challenge. Optical microscopy provides sufficient contrast and resolution in 2d, however fails to deliver non-destructive 3d reconstructions with isotropic resolution. It requires several invasive preparation steps, which introduce structural artefacts, namely dehydration, physical slicing and staining, or for the case of light sheet microscopy also clearing of the tissue.

View Article and Find Full Text PDF

Background: Photon-counting computed tomography (CT) is an advanced imaging technique that enables multi-energy imaging from a single scan. However, the limited photon count assigned to narrow energy bins leads to increased quantum noise in the reconstructed spectral images. To address this issue, leveraging the prior information in the spectral images is essential.

View Article and Find Full Text PDF

Background: Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury.

View Article and Find Full Text PDF

Age-related changes in the vestibulothalamic pathway: Association with balance ability and subjective visual vertical of vestibular function.

Brain Res Bull

January 2025

Department of Health, Graduate School, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 31116, Republic of Korea. Electronic address:

Introduction: The thalamus regulates various sensory information to each related brain area. The vestibular nucleus transmits information of motor control to the thalamus regulating coordination function. The vestibulothalamic tract (VTT) is a neural pathway between the vestibular nucleus and thalamus that processes vestibular information for postural balance and spatial perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!