In Toponomics, the function protein pattern in cells or tissue (the toponome) is imaged and analyzed for applications in toxicology, new drug development and patient-drug-interaction. The most advanced imaging technique is robot-driven multi-parameter fluorescence microscopy. This technique is capable of co-mapping hundreds of proteins and their distribution and assembly in protein clusters across a cell or tissue sample by running cycles of fluorescence tagging with monoclonal antibodies or other affinity reagents, imaging, and bleaching in situ. The imaging results in complex multi-parameter data composed of one slice or a 3D volume per affinity reagent. Biologists are particularly interested in the localization of co-occurring proteins, the frequency of co-occurrence and the distribution of co-occurring proteins across the cell. We present an interactive visual analysis approach for the evaluation of multi-parameter fluorescence microscopy data in toponomics. Multiple, linked views facilitate the definition of features by brushing multiple dimensions. The feature specification result is linked to all views establishing a focus+context visualization in 3D. In a new attribute view, we integrate techniques from graph visualization. Each node in the graph represents an affinity reagent while each edge represents two co-occurring affinity reagent bindings. The graph visualization is enhanced by glyphs which encode specific properties of the binding. The graph view is equipped with brushing facilities. By brushing in the spatial and attribute domain, the biologist achieves a better understanding of the function protein patterns of a cell. Furthermore, an interactive table view is integrated which summarizes unique fluorescence patterns. We discuss our approach with respect to a cell probe containing lymphocytes and a prostate tissue section.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2011.217DOI Listing

Publication Analysis

Top Keywords

multi-parameter fluorescence
12
fluorescence microscopy
12
affinity reagent
12
visual analysis
8
microscopy data
8
data toponomics
8
function protein
8
co-occurring proteins
8
cell interactive
8
linked views
8

Similar Publications

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Introduction: In vitro screening of macrophages for drug-induced effects, such as phospholipidosis, is useful for detecting potentially problematic compounds in the preclinical development of oral inhaled products. High-content image analysis (HCIA) is a multi-parameter approach for cytotoxicity screening. This study provides new insights into HCIA-derived response patterns of murine J774A.

View Article and Find Full Text PDF
Article Synopsis
  • * Yeast cells exhibit a wider size range compared to mammalian cells, which makes it challenging to accurately determine single-cell gates during FACS.
  • * The report investigates different gating options for yeast display and proposes an optimized flow cytometry method to enhance the selection of single yeast cells, leading to improved results in yeast display studies.
View Article and Find Full Text PDF

The design of chemical sensors and probes is usually based on selective receptors for individual analytes, however, many analytical tasks are dedicated to multi-analyte sensing or recognizing properties of the sample related to more than one analyte. While it is possible to simultaneously use multiple sensors/receptors in such cases, multi-responsive probes could be an attractive alternative. In this work, we use thiomalic acid-capped CdTe quantum dots as a multiple-response receptor for the detection and quantification of six heavy metal cations: Ag(I), Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) at micromolar concentration levels.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses challenges in measuring cell growth in cyanobacteria due to issues like self-shading and uneven CO levels in traditional photobioreactors.
  • A new microfluidic platform allows for precise monitoring of cyanobacterial growth, providing uniform light and accurate CO supply at the single-cell level.
  • The research demonstrated that under controlled conditions, cyanobacterial growth is stable with synchronized cell division, but growth ceases quickly in darkness and is limited by low CO levels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!