We present a GPU-based ray-tracing system for the accurate and interactive visualization of cut-surfaces through 3D simulations of physical processes created from spectral/hp high-order finite element methods. When used by the numerical analyst to debug the solver, the ability for the imagery to precisely reflect the data is critical. In practice, the investigator interactively selects from a palette of visualization tools to construct a scene that can answer a query of the data. This is effective as long as the implicit contract of image quality between the individual and the visualization system is upheld. OpenGL rendering of scientific visualizations has worked remarkably well for exploratory visualization for most solver results. This is due to the consistency between the use of first-order representations in the simulation and the linear assumptions inherent in OpenGL (planar fragments and color-space interpolation). Unfortunately, the contract is broken when the solver discretization is of higher-order. There have been attempts to mitigate this through the use of spatial adaptation and/or texture mapping. These methods do a better job of approximating what the imagery should be but are not exact and tend to be view-dependent. This paper introduces new rendering mechanisms that specifically deal with the kinds of native data generated by high-order finite element solvers. The exploratory visualization tools are reassessed and cast in this system with the focus on image accuracy. This is accomplished in a GPU setting to ensure interactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2011.206 | DOI Listing |
Heliyon
August 2024
Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, TO, Italy.
In this study, the implementation of a high-order spatial discretization method into a Finite Volume solver is presented. Specific emphasis is put on the analysis of the performance over selected turbomachinery test cases. High-order numerical discretization is achieved by adopting the cell-centered Least-Square reconstruction, which is implemented in the in-house solver HybFlow.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Institute of Geophysics, Department of Earth and Planetary Sciences, ETH Zürich, 8092 Zürich, Switzerland.
This work explores techniques for accurately modeling the propagation of ultrasound waves in lossy fluid-solid media, such as within transcranial ultrasound, using the spectral-element method. The objectives of this work are twofold, namely, (1) to present a formulation of the coupled viscoacoustic-viscoelastic wave equation for the spectral-element method in order to incorporate attenuation in both fluid and solid regions and (2) to provide an end-to-end workflow for performing spectral-element simulations in transcranial ultrasound. The matrix-free implementation of this high-order finite-element method is very well-suited for performing waveform-based ultrasound simulations for both transcranial imaging and focused ultrasound treatment thanks to its excellent accuracy, flexibility for dealing with complex geometries, and computational efficiency.
View Article and Find Full Text PDFNeural Netw
February 2025
Centre de Mathématiques Appliquées (CMAP), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, 91128, France.
We propose a neural networks method to estimate extreme Expected Shortfall, and even more generally, extreme conditional tail moments as functions of confidence levels, in heavy-tailed settings. The convergence rate of the uniform error between the log-conditional tail moment and its neural network approximation is established leveraging extreme-value theory (in particular the high-order condition on the distribution tails) and using critically two activation functions (eLU and ReLU) for neural networks. The finite sample performance of the neural network estimator is compared to bias-reduced extreme-value competitors using synthetic heavy-tailed data.
View Article and Find Full Text PDFIn this work, a nested hollow-core anti-resonant fiber (HC-ARF) with an elliptical cladding for high-power lasers for 2 µm laser transmission was proposed and theoretically investigated. The dual-layer elliptical tubes nested within the fiber enable the low-loss single-mode transmission. The finite element method (FEM) was employed to analyze and optimize the structure of fiber, with a total loss of less than 5 × 10dB/m across the wavelength range of 1920nm to 2040nm.
View Article and Find Full Text PDFHeliyon
November 2024
Pangea Aerospace, Avinguda Número 1, 20 08040 Barcelona, Spain.
We propose a numerical approach to solve a long-standing challenge which is the applicability of the artificial compressibility (AC) formulation for solving the incompressible Navier-Stokes equations at very-low Reynolds numbers. A wide range of engineering applications involves very-low Reynolds number flows in Micro-ElectroMechanical Systems (MEMS) and in the fields of chemical-, agricultural- and biomedical engineering. It is known that the already existing numerical methods using the AC approach fail to provide physically correct results at very-low Reynolds numbers ( ≤ 1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!