Objective: To examine the regulatory role of interleukin-22 (IL-22) in the expression of RANKL and induction of osteoclastogenesis in rheumatoid arthritis (RA).
Methods: Concentrations of IL-22 and RANKL in the serum and synovial fluid of RA patients were measured using enzyme-linked immunosorbent assay. RA synovial fibroblasts were treated with recombinant human IL-22 (rhIL-22), and the expression of RANKL messenger RNA (mRNA) and protein was measured using real-time polymerase chain reaction, Western blotting, and intracellular immunostaining. Human monocytes were cocultured with IL-22-prestimulated RA synovial fibroblasts and macrophage colony-stimulating factor, and osteoclastogenesis was assessed by counting the multinucleated cells (those staining positive for tartrate-resistant acid phosphatase).
Results: The IL-22 concentration in the synovial fluid was higher in RA patients than in patients with osteoarthritis (OA). The serum IL-22 concentration was also higher in RA patients than in OA patients and healthy volunteers, and this correlated with serum titers of rheumatoid factor and anti-cyclic citrullinated peptide antibodies. In RA synovial fibroblasts treated with rhIL-22, the expression of RANKL mRNA and protein was increased in a dose-dependent manner. IL-22-induced RANKL expression was down-regulated significantly by the inhibition of p38 MAPK/NF-κB or JAK-2/STAT-3 signaling. In human monocytes cocultured with IL-22-prestimulated RA synovial fibroblasts in the absence of exogenous RANKL, the monocytes differentiated into osteoclasts, but this osteoclastogenesis decreased after p38 MAPK/NF-κB or JAK-2/STAT-3 signaling was inhibited.
Conclusion: These results show that IL-22 up-regulates RANKL expression in RA synovial fibroblasts and induces osteoclastogenesis. These effects are mediated by the p38 MAPK/NF-κB and JAK-2/STAT-3 signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.33446 | DOI Listing |
Chin J Integr Med
January 2025
Department of Rheumalogy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood.
View Article and Find Full Text PDFInflamm Res
January 2025
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
Objective: Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects.
View Article and Find Full Text PDFJ Transl Med
January 2025
Center of Interventional Medicine for Precision and Advanced Cellular Therapy, IMPACT, Santiago, Chile.
Objective: The inflammatory responses from synovial fibroblasts and macrophages and the mitochondrial dysfunction in chondrocytes lead to oxidative stress, disrupt extracellular matrix (ECM) homeostasis, and accelerate the deterioration process of articular cartilage in osteoarthritis (OA). In recent years, it has been proposed that mesenchymal stromal cells (MSC) transfer their functional mitochondria to damaged cells in response to cellular stress, becoming one of the mechanisms underpinning their therapeutic effects. Therefore, we hypothesize that a novel cell-free treatment for OA could involve direct mitochondria transplantation, restoring both cellular and mitochondrial homeostasis.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China. Electronic address:
Background: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by synovial inflammation and fibrosis. Gentiopicroside (GPS), one of the main active ingredients of Gentiana macrophylla, is widely used in anti-inflammatory and anti-fibrotic therapies. However, the exact mechanism by which GPS treats synovial inflammation and fibrosis in KOA remains unclear.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!