Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present an extension of the generalized amber force field to allow the modeling of azobenzenes by means of classical molecular mechanics. TD-DFT calculations were employed to derive different interaction models for 4-hydroxy-4'-methyl-azobenzene, including the ground (S(0)) and S(1) excited state. For both states, partial charges and the -N = N- torsion potentials were characterized. On this basis, we pave the way to large-scale model simulations involving azobenzene molecular switches. Using the example of an isolated molecule, the mechanics of cyclic switching processes are demonstrated by classical molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-011-1270-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!