Slow cortical rhythm (SCR) is characterized by rhythmic cycling of active (UP) and silent (DOWN) states in cortical cells. In urethane anesthesia, SCR appears as alternation of almost isoelectrical EEG periods and low-frequency, high-amplitude large shifts with superimposed high-frequency activity in the local field potentials (LFPs). Dense cholinergic projection reaches the cortex from the basal forebrain (BF), and acetylcholine (ACh) has been demonstrated to play a crucial role in the regulation of cortical activity. In the present experiments, cholinergic drugs were administered topically to the cortical surface of urethane-anesthetized rats to examine the direct involvement of ACh and the BF cholinergic system in the SCR. SCR was recorded by a 16-pole vertical electrode array from the hindlimb area of the somatosensory cortex. Multiple unit activity (MUA) was recorded from layer V to VI in close proximity of the recording array. Neither a low dose (10 mM solution) of the muscarinic antagonist atropine or the nicotinic agonist nicotine (1 mM solution) had any effect on SCR. In contrast, the higher dose (100 mM solution) of atropine, the cholinergic agonist carbachol (32 mM solution), and the cholinesterase inhibitor physostigmine (13 mM solution) all decreased the number of UP states, delta power (0-3 Hz) and MUA. These results suggest that cholinergic system may influence SCR through muscarinic mechanisms during urethane anesthesia. Cholinergic activation obstructs the mechanisms responsible for local or global synchronization seen during SCR as this rhythm was disrupted or aborted. Muscarinic antagonism can evoke similar changes when high dose of atropine is applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2011.10.005 | DOI Listing |
Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.
View Article and Find Full Text PDFPLoS Biol
January 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America.
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.
Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
High cardiorespiratory fitness (CRF) is associated with reduced cortical thinning and gray matter (GM) shrinkage in older adults. We investigated associations of CRF measured with peak oxygen consumption (V̇ O) with cortical thickness and GM volume across the adult lifespan. We hypothesized that higher CRF is associated with less cortical thinning and GM shrinkage across the adult lifespan, which is associated with better cognitive performance.
View Article and Find Full Text PDFJ Affect Disord
January 2025
University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada. Electronic address:
Aim: Major depressive disorder (MDD) is characterized by altered activity in various higher-order regions like the anterior cingulate and prefrontal cortex. While some findings also show changes in lower-order sensory regions like the occipital cortex in MDD, the latter's exact neural and temporal, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!