Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipoarabinomannan (LAM) is a critical virulence factor in the pathogenesis of Mycobacterium tuberculosis, the causative agent of tuberculosis. LAM is secreted in urine and serum from infected patients and is being studied as a potential diagnostic indicator for the disease. Herein, we present a novel ultra-sensitive and specific detection strategy for monomeric LAM based on its amphiphilic nature and consequent interaction with supported lipid bilayers. Our strategy involves the capture of LAM on waveguides functionalized with membrane mimetic architectures, followed by detection with a fluorescently labeled polyclonal antibody. This approach offers ultra-sensitive detection of lipoarabinomannan (10 fM, within 15 min) and may be extended to other amphiphilic markers. We also show that chemical deacylation of LAM completely abrogates its association with the supported lipid bilayers. The loss of signal using the waveguide assay for deacylated LAM, as well as atomic force microscopy (AFM) images that show no change in height upon addition of deacylated LAM support this hypothesis. Mass spectrometry of chemically deacylated LAM indicates the presence of LAM-specific carbohydrate chains, which maintain antigenicity in immunoassays. Further, we have developed the first three-dimensional structural model of mannose-capped LAM that provides insights into the orientation of LAM on supported lipid bilayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tube.2011.09.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!