Phase cancellation in ultrasound due to large receiver size has been proposed as a contributing factor to the inaccuracy of estimating broadband ultrasound attenuation (BUA), which is used to characterize bone quality. Transducers with aperture size ranging from 2 to 5 mm have been used in previous attempts to study the effect of phase cancellation. However, these receivers themselves are susceptible to phase cancellation because aperture size is close to one center wavelength (about 3 mm at 500 KHz in water). This study uses an ultra small receiver (aperture size: 0.2 mm) in conjunction with a newly developed two-dimensional (2-D) synthetic array system to investigate the effects of phase cancellation and receiver aperture size on BUA estimations of bone tissue. In vitro ultrasound measurements were conducted on 54 trabecular bone samples (harvested from sheep femurs) in a confocal configuration with a focused transmitter and synthesized focused receivers of different aperture sizes. Phase sensitive (PS) and phase insensitive (PI) detections were performed. The results show that phase cancellation does have a significant effect on BUA. The normalized BUA (nBUA) with PS is 8.1% higher than PI nBUA while PI BUA is well correlated with PS BUA. Receiver aperture size also influences the BUA reading for both PI and PS detection and smaller receiver aperture tends to result in higher BUA readings. The results also indicate that the receiver aperture size used in the confocal configuration with PI detection should at least equal the aperture of the transmitter to capture most of the energy redistributed by the interference and diffraction from the trabecular bone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3223273 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.08.009 | DOI Listing |
Micromachines (Basel)
December 2024
School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.
View Article and Find Full Text PDFSci Adv
January 2025
CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).
View Article and Find Full Text PDFLight Sci Appl
January 2025
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China.
Recent advancements show the potential of cascaded metalenses in near-eye display applications, achieving performance that rivals traditional eyepiece systems. By leveraging the human pupil as an aperture and taking into account practical factors such as eye relief, pupil size, and display dimensions, this approach suggests a bright future for the incorporation of meta-optics in cutting-edge near-eye display technologies.
View Article and Find Full Text PDFThis study investigates the role of pitch size in achieving high numerical aperture (NA) and focusing efficiency in metalens design, while demonstrating how high refractive index materials contribute to performance enhancement by enabling smaller pitch sizes through reduced filling ratios. Silicon-rich nitride (SRN) was chosen as the material platform due to its high refractive index, CMOS compatibility, and cost-effective fabrication. Two SRN-based metalenses were designed: a geometric phase metalens (GPM) and a propagation phase metalens (PPM), each evaluated at aspect ratios of 10:1 and 4:1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!