Ras is known as an oncogene transferring signals from the plasma membrane. Recent studies have demonstrated that plasma membrane was not the unique platform for Ras signaling. Ras could also be endocytosed and transported to different endomembrane compartments, evoking different signal pathways there. It is of great significance to exploit the unique intracellular trafficking features of different Ras isoforms to develop new anti-Ras drugs. ADP-ribosylation factor 6 (Arf6) was known to mediate one of the clathrin-independent endocytosis (CIE) pathways. The role of Arf6 in K-Ras dynamic remains largely unknown. In this study, we showed that K-RasG12V co-localized with Arf6 at the plasma membrane, and entered the tubular endosomes or protrusions induced by cytochalasin D or aluminum fluoride in the same way as H-RasG12V does. A subcellular fractionation experiment demonstrated that Arf6 siRNA treatment reduced the plasma membrane presence of both endogenous Ras isoforms and inhibited the phosphorylation of Erk triggered by EGF. When co-expressed with Arf6Q67L, both isoforms were sequestered into the large phosphatidylinositol 4,5-biphosphate [PI(4,5)P2]-enriched vacuoles. However, when co-expressed with Arf6T27N, K-RasG12V co-localized with Arf6T27N at the tubular endosomes significantly than H-RasG12V. Immunoprecipitation and GST fusion protein pull-down studies found out for the first time that K-RasG12V interacted with Arf6T27N. Swapping mutation study showed that the above difference was due to different C-termini. Our study indicated that Arf6 was involved in the dynamic regulation of both Ras isoforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2011.10.002 | DOI Listing |
Bioconjug Chem
January 2025
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States.
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFBlood
January 2025
New York Blood Center, New York, New York, United States.
Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFISME J
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!