The effect of SAMe and betaine on Hepa 1-6, C34 and E47 liver cell survival in vitro.

Exp Mol Pathol

Department of Hematology, LA Biomed, Torrance, CA 90502, USA.

Published: February 2012

In recent years, methyl one-carbon metabolism has received a great deal of attention because the disruption of methyl balance in a variety of genetically modified mice is associated with the development of various forms of liver injury, namely fatty liver disease and hepatocellular carcinoma (HCC). In addition, patients with liver disease often have an abnormal expression of key genes involved in methionine metabolism as well as elevated serum levels of methionine and homocysteine (Hcy). S-adenosylmethionine (SAMe) has rapidly moved from being a methyl donor to a key metabolite that regulates hepatocyte proliferation, necrosis and differentiation. Biosynthesis of SAMe occurs in all mammalian cells as the first step in methionine catabolism in a reaction catalyzed by methionine adenosyltransferase (MAT). Decreased hepatic SAMe biosynthesis is a consequence of numerous forms of chronic liver injury. In an animal model of chronic liver SAMe deficiency, the liver is predisposed to further injury and develops spontaneous steatohepatitis and HCC. SAMe treatment in experimental animal models of liver injury shows hepatoprotective properties. Meta-analyses also showed that it is effective in the treatment of patients with cholestatic liver diseases. We studied the survival of liver cells treated with SAMe and betaine using Hepa 1-6 and E47/C34 cell lines. We showed that exogenous SAMe decreased the number of Hepa 1-6 and E47/C34 cells, and increased the number of dead cells in vitro. Betaine had no significant effect on the number of surviving cells and the number of dead cells. The combination of both methyl donors significantly increased the survival of liver cells and reduced necrosis, compared to SAMe alone. This study showed the inhibition of the proliferation and increased necrosis in response to SAMe on liver cancer cell lines Hepa 1-6 and C34.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482141PMC
http://dx.doi.org/10.1016/j.yexmp.2011.10.001DOI Listing

Publication Analysis

Top Keywords

hepa 1-6
16
liver
12
liver injury
12
betaine hepa
8
1-6 c34
8
liver disease
8
chronic liver
8
survival liver
8
liver cells
8
1-6 e47/c34
8

Similar Publications

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

The substantial mortality and morbidity of hepatocellular carcinoma, representing 90% of liver cancers, poses a significant health burden. The effectiveness of traditional hepatocellular carcinoma treatments such as surgical resection, radiotherapy, and chemotherapy is limited, underscoring the need for innovative therapeutic strategies. To this end, we synthesized phthalyl-pullulan nanoparticles encapsulating IR780 (an NIR-responsive heptamethine cyanine dye) and R848 (resiquimod; a TLR7/8 agonist) (PIR NPs).

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a significant global health issue, and the traditional Chinese medicine Bushen Jianpi (BSJP) has shown promise in treating it, but its effectiveness is limited due to low bioavailability.
  • The study developed BSJP-loaded liposomes (BSJP@Lip) using a microfluidic device and tested their characteristics, including size, drug loading, and release, as well as their effects on various hepatic cancer cell lines.
  • Results indicated that BSJP@Lip nanoparticles were effectively taken up by cancer cells, significantly reduced cell viability, induced cell death, and increased levels of inflammatory markers IL-18 and NLRP3 in a dose-dependent manner.
View Article and Find Full Text PDF

Inhibition of SIRT1 relieves hepatocarcinogenesis via alleviating autophagy and inflammation.

Int J Biol Macromol

October 2024

Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China. Electronic address:

Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways.

View Article and Find Full Text PDF

Tumor microenvironment (TME) is a complex dynamic system with many tumor-interacting components including tumor-infiltrating leukocytes (TILs), cancer associated fibroblasts, blood vessels, and other stromal constituents. It intrinsically affects tumor development and pharmacology of oncology therapeutics, particularly immune-oncology (IO) treatments. Accurate measurement of TME is therefore of great importance for understanding the tumor immunity, identifying IO treatment mechanisms, developing predictive biomarkers, and ultimately, improving the treatment of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!