Relatively little is known about the reaction chemistry of the human defense factor hypothiocyanite (OSCN(-)) and its conjugate acid hypothiocyanous acid (HOSCN), in part because of their instability in aqueous solutions. Herein we report that HOSCN/OSCN(-) can engage in a cascade of pH- and concentration-dependent comproportionation, disproportionation, and hydrolysis reactions that control its stability in water. On the basis of reaction kinetic, spectroscopic, and chromatographic methods, a detailed mechanism is proposed for the decomposition of HOSCN/OSCN(-) in the range of pH 4-7 to eventually give simple inorganic anions including CN(-), OCN(-), SCN(-), SO(3)(2-), and SO(4)(2-). Thiocyanogen ((SCN)(2)) is proposed to be a key intermediate in the hydrolysis; and the facile reaction of (SCN)(2) with OSCN(-) to give NCS(═O)SCN, a previously unknown reactive sulfur species, has been independently investigated. The mechanism of the aqueous decomposition of (SCN)(2) around pH 4 is also reported. The resulting mechanistic models for the decomposition of HOSCN and (SCN)(2) address previous empirical observations, including the facts that the presence of SCN(-) and/or (SCN)(2) decreases the stability of HOSCN/OSCN(-), that radioisotopic labeling provided evidence that under physiological conditions decomposing OSCN(-) is not in equilibrium with (SCN)(2) and SCN(-), and that the hydrolysis of (SCN)(2) near neutral pH does not produce OSCN(-). Accordingly, we demonstrate that, during the human peroxidase-catalyzed oxidation of SCN(-), (SCN)(2) cannot be the precursor of the OSCN(-) that is produced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja2083152 | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Hangzhou, 310058, Zhejiang, China.
The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
Aims: To investigate the effects of Lactococcus lactis subsp. lactis strains LL100933 and LL12007 on the host defense mechanisms of Caenorhabditis elegans against pathogenic infections and stressors.
Methods And Results: C.
J Transl Med
January 2025
Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.
Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!