Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703525 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0542-11.2011 | DOI Listing |
Med J Malaysia
January 2025
Universiti Malaysia Sarawak, Faculty of Medicine and Health Sciences, Kota Samarahan, Sarawak, Malaysia.
Transcranial direct current stimulation (tDCS) has emerged as a potential adjunct therapy for post-stroke motor rehabilitation. While conventional rehabilitation methods remain the primary approach to improving motor function after stroke, many patients experience incomplete recovery, necessitating the exploration of additional interventions. This commentary article examines the role of tDCS in poststroke motor recovery, focusing on its mechanisms, efficacy, and limitations.
View Article and Find Full Text PDFSoa Chongsonyon Chongsin Uihak
January 2025
Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Korea.
This review examines the therapeutic potential of neuromodulation methods, including neurofeedback, transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), as non-pharmacological interventions for children with attention-deficit/hyperactivity disorder (ADHD). A comprehensive review of current studies was conducted, focusing on each technique's mechanism, application, and efficacy in managing ADHD symptoms and cognitive deficits. Studies included human participants with ADHD, evaluating changes in symptom severity and cognitive outcomes.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Foundation for Research on Information Technologies in Society, Zurich, Switzerland.
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.
View Article and Find Full Text PDFEur Psychiatry
January 2025
Department of Psychiatry, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Biol Psychiatry Cogn Neurosci Neuroimaging
January 2025
Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.
Objective: Conduct disorder (CD) is associated with deficits in the use of punishment for reinforcement learning (RL) and subsequent decision-making, contributing to reckless, antisocial, and aggressive behaviors. Here, we used functional magnetic resonance imaging (fMRI) to examine whether differences in behavioral learning rates derived from computational modeling, particularly for punishment, are reflected in aberrant neural responses in youths with CD compared to typically-developing controls (TDCs).
Methods: 75 youths with CD and 99 TDCs (9-18 years, 47% girls) performed a probabilistic RL task with punishment, reward, and neutral contingencies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!