Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cannabinoid 2 receptor (CB2R) agonists attenuate inflammatory pain but the precise mechanism implicated in these effects is not completely elucidated. We investigated if the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K(+) (KATP) channels signaling pathway triggered by the neuronal nitric oxide synthase (NOS1) and modulated by opioids, participates in the local antinociceptive effects produced by a CB2R agonist (JWH-015) during chronic inflammatory pain.
Methodology/principal Findings: In wild type (WT) and NOS1 knockout (NOS1-KO) mice, at 10 days after the subplantar administration of complete Freund's adjuvant (CFA), we evaluated the antiallodynic (von Frey filaments) and antihyperalgesic (plantar test) effects produced by the subplantar administration of JWH-015 and the reversion of their effects by the local co-administration with CB2R (AM630), peripheral opioid receptor (naloxone methiodide, NX-ME) or CB1R (AM251) antagonists. Expression of CB2R and NOS1 as well as the antinociceptive effects produced by a high dose of JWH-015 combined with different doses of selective L-guanylate cyclase (ODQ) or PKG (Rp-8-pCPT-cGMPs) inhibitors or a KATP channel blocker (glibenclamide), were also assessed. Results show that the local administration of JWH-015 dose-dependently inhibited the mechanical and thermal hypersensitivity induced by CFA which effects were completely reversed by the local co-administration of AM630 or NX-ME, but not AM251. Inflammatory pain increased the paw expression of CB2R and the dorsal root ganglia transcription of NOS1. Moreover, the antinociceptive effects of JWH-015 were absent in NOS1-KO mice and diminished by their co-administration with ODQ, Rp-8-pCPT-cGMPs or glibenclamide.
Conclusions/significance: These data indicate that the peripheral antinociceptive effects of JWH-015 during chronic inflammatory pain are mainly produced by the local activation of the nitric oxide-cGMP-PKG-KATP signaling pathway, triggered by NOS1 and mediated by endogenous opioids. These findings suggest that the activation of this pathway might be an interesting therapeutic target for the treatment of chronic inflammatory pain with cannabinoids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198780 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026688 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!