Putative mechanisms of induction and maintenance of seizure-like activity (SLA) in the low Mg(2+) model of seizures are: facilitation of NMDA receptors and decreased surface charge screening near voltage-gated channels. We have estimated the role of such screening in the early stages of SLA development at both physiological and room temperatures. External Ca(2+) and Mg(2+) promote a depolarization shift of the sodium channel voltage sensitivity; when examined in hippocampal pyramidal neurons, the effect of Ca(2+) was 1.4 times stronger than of Mg(2+). Removing Mg(2+) from the extracellular solution containing 2 mM Ca(2+) induced recurrent SLA in hippocampal CA1 pyramidal layer in 67% of slices. Reduction of [Ca(2+)](o) to 1 mM resulted in 100% appearance of recurrent SLA or continuous SLA. Both delay before seizure activity and the inter-SLA time were significantly reduced. Characteristics of seizures evoked in low Mg(2+)/1 mM Ca(2+)/3.5 K(+) were similar to those obtained in low Mg(2+)/2 Ca(2+)/5mM K(+), suggesting that reduction of [Ca(2+)](o) to 1 mM is identical to the increase in [K(+)](o) to 5 mM in terms of changes in cellular excitability and seizure threshold. An increase of [Ca(2+)](o) to 3 mM completely abolished SLA generation even in the presence of 5 mM [K(+)](o). A large variation in the ability of [Ca(2+)](o) to stop epileptic discharges in initial stage of SLA was found. Our results indicate that surface charge of the neuronal membrane plays a crucial role in the initiation of low Mg(2+)-induced seizures. Furthermore, our study suggests that Ca(2+) and Mg(2+), through screening of surface charge, have important anti-seizure and antiepileptic properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349697PMC
http://dx.doi.org/10.1152/jn.00574.2011DOI Listing

Publication Analysis

Top Keywords

surface charge
16
ca2+ mg2+
8
recurrent sla
8
reduction [ca2+]o
8
sla
7
mg2+
5
surface
4
charge impact
4
impact low-magnesium
4
low-magnesium model
4

Similar Publications

Construction of Mn-Defective S/MnCdS for Promoting Photocatalytic N Reduction.

Inorg Chem

January 2025

Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.

View Article and Find Full Text PDF

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!