A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo implantation of tissue-engineered human nasal septal neocartilage constructs: a pilot study. | LitMetric

Objective: To determine the in vivo biocompatibility of septal neocartilage constructs developed in vitro by an alginate intermediate step.

Study Design: Prospective, animal model.

Setting: Research laboratory.

Subjects And Methods: A murine model was used to examine the maturation of neocartilage constructs in vivo. Chondrocytes collected from patients undergoing septoplasty were expanded in monolayer and suspended in alginate beads for 3-dimensional culture in media containing human serum and growth factors. After in vitro incubation for 5 weeks, the constructs were implanted in the dorsum of athymic mice for 30 and 60 days (n = 9). After the mice were sacrificed, the constructs were recovered for assessment of their morphological, histochemical, biochemical, and biomechanical properties.

Results: The mice survived and tolerated the implants well. Infection and extrusion were not observed. Neocartilage constructs maintained their general shape and size and demonstrated cell viability after implantation. The implanted constructs were firm and opaque, sharing closer semblance to native septal tissue relative to the gelatinous, translucent preimplant constructs. Histochemical staining with hematoxylin and eosin (H&E) revealed that the constructs exhibited distinct morphologies characteristic of native tissue, which were not observed in preimplant constructs. DNA and type II collagen increased with duration of implantation, whereas type I collagen and glycoaminoglycans (GAG) decreased. Mechanical testing of a 60-day implanted construct demonstrated characteristics similar to native human septal cartilage.

Conclusions: Neocartilage constructs are viable in an in vivo murine model. The histologic, biochemical, and biomechanical features of implanted constructs closely resemble native septal tissue when compared with preimplant constructs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352411PMC
http://dx.doi.org/10.1177/0194599811425141DOI Listing

Publication Analysis

Top Keywords

neocartilage constructs
20
constructs
13
preimplant constructs
12
septal neocartilage
8
murine model
8
biochemical biomechanical
8
implanted constructs
8
native septal
8
septal tissue
8
type collagen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!