Tungsten oxide nanorods were prepared from commercial crystalline WO(3) particles treated with triethylamine under electron beam irradiation in an electron microscope operating at 200 kV. The amine acts as a molecular knife, cleaving the particles under beam irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp22596kDOI Listing

Publication Analysis

Top Keywords

electron beam
8
beam irradiation
8
accelerated electron
4
beam induced
4
induced breakdown
4
breakdown commercial
4
commercial wo3
4
wo3 nanorods
4
nanorods presence
4
presence triethylamine
4

Similar Publications

A simple cavity-enhanced laser-based heater for reflective samples.

Rev Sci Instrum

January 2025

Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany.

Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment.

View Article and Find Full Text PDF

The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.

View Article and Find Full Text PDF

A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.

Acta Crystallogr A Found Adv

March 2025

Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom.

Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method.

View Article and Find Full Text PDF

Ion beam induced secondary electron tomography of acrylonitrile-styrene-acrylate/polycarbonate polymer blends for fused filament fabrication and injection moulding.

Sci Rep

January 2025

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.

Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).

View Article and Find Full Text PDF

Laser Wakefield Acceleration of Ions with a Transverse Flying Focus.

Phys Rev Lett

December 2024

Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.

The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100  MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!