A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wound contraction is attenuated by fasudil inhibition of Rho-associated kinase. | LitMetric

Wound contraction is attenuated by fasudil inhibition of Rho-associated kinase.

Plast Reconstr Surg

Durham, N.C. From the Division of Plastic and Reconstructive Surgery, Department of Surgery, and the Department of Pathology, Duke University Medical Center.

Published: November 2011

Background: Dermal scarring and scar contracture result in restriction of movement. There are no effective drugs to prevent scarring. RhoA and Rho-associated kinase have emerged as regulators of fibrosis and contracture. Fasudil, a Rho-associated kinase inhibitor, has been demonstrated to have antifibrotic effects in models of liver, renal, and cardiac fibrosis. The role of fasudil in preventing dermal scarring and contractures has not been studied. The authors used a rat model of dermal wound healing to assess the effects of fasudil with regard to the prevention of scarring.

Methods: Human scar tissue and surrounding normal skin were immunostained for RhoA and Rho-associated kinase. Full-thickness wounds were created on Wistar-Han rats, and fasudil (30 mg/kg/day) or saline was continuously delivered subcutaneously. Wound contraction was measured by gravitational planimetry. After 21 days, tissue was harvested for Masson's trichrome, hematoxylin and eosin, Ki-67, and CD31 staining. Fibroblast-populated collagen lattices were used to assess the mechanistic effects of fasudil on contractility. Myofibroblast formation was assessed in the presence of fasudil.

Results: Human scar tissue in the remodeling phase of repair showed increased expression of RhoA and Rho-associated kinase in scar tissue compared with surrounding normal tissue. Fasudil inhibited wound contraction as compared with controls. Hematoxylin and eosin and Masson's trichrome were similar between groups. Fasudil did not alter angiogenesis or proliferation. Fasudil inhibited fibroblast contractility and myofibroblast formation in vitro.

Conclusions: There is growing evidence that the RhoA/Rho-associated kinase pathway plays an important role in wound healing and scar contracture. The authors present data showing that inhibition of Rho-associated kinase hinders fibroblast contractility and may be beneficial in preventing scar contracture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205419PMC
http://dx.doi.org/10.1097/PRS.0b013e31822b7352DOI Listing

Publication Analysis

Top Keywords

rho-associated kinase
24
wound contraction
12
scar contracture
12
rhoa rho-associated
12
scar tissue
12
fasudil
9
inhibition rho-associated
8
dermal scarring
8
wound healing
8
effects fasudil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!