Plexin-B1 activates NF-κB and IL-8 to promote a pro-angiogenic response in endothelial cells.

PLoS One

Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, Baltimore, Maryland, United States of America.

Published: February 2012

AI Article Synopsis

  • Sema4D interacts with its receptor Plexin-B1 in endothelial cells, promoting angiogenesis through RhoA and Akt pathways while activating NF-κB.
  • The activation of NF-κB leads to key cellular responses such as migration, capillary tube formation, and protection against apoptosis, although it does not influence cell proliferation.
  • The study concludes that the Sema4D/Plexin-B1 pathway is vital for IL-8 production and angiogenesis in tumor environments, highlighting its potential significance in cancer biology.

Article Abstract

Background: The semaphorins and their receptors, the plexins, are proteins related to c-Met and the scatter factors that have been implicated in an expanding signal transduction network involving co-receptors, RhoA and Ras activation and deactivation, and phosphorylation events. Our previous work has demonstrated that Semaphorin 4D (Sema4D) acts through its receptor, Plexin-B1, on endothelial cells to promote angiogenesis in a RhoA and Akt-dependent manner. Since NF-κB has been linked to promotion of angiogenesis and can be activated by Akt in some contexts, we wanted to examine NF-κB in Sema4D treated cells to determine if there was biological significance for the pro-angiogenic phenotype observed in endothelium.

Methods/principal Findings: Using RNA interference techniques, gel shifts and NF-κB reporter assays, we demonstrated NF-κB translocation to the nucleus in Sema4D treated endothelial cells occurring downstream of Plexin-B1. This response was necessary for endothelial cell migration and capillary tube formation and protected endothelial cells against apoptosis as well, but had no effect on cell proliferation. We dissected Plexin-B1 signaling with chimeric receptor constructs and discovered that the ability to activate NF-κB was dependent upon Plexin-B1 acting through Rho and Akt, but did not involve its role as a Ras inhibitor. Indeed, inhibition of Rho by C3 toxin and Akt by LY294002 blocked Sema4D-mediated endothelial cell migration and tubulogenesis. We also observed that Sema4D treatment of endothelial cells induced production of the NF-κB downstream target IL-8, a response necessary for angiogenesis. Finally, we could show through co-immunofluorescence for p65 and CD31 that Sema4D produced by tumor xenografts in nude mice activated NF-κB in vessels of the tumor stroma.

Conclusion/significance: These findings provide evidence that Sema4D/Plexin-B1-mediated NF-κB activation and IL-8 production is critical in the generation a pro-angiogenic phenotype in endothelial cells and suggests a new therapeutic target for the anti-angiogenic treatment of some cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196529PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025826PLOS

Publication Analysis

Top Keywords

endothelial cells
24
nf-κb
9
endothelial
8
response endothelial
8
sema4d treated
8
pro-angiogenic phenotype
8
endothelial cell
8
cell migration
8
cells
7
plexin-b1
5

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Sex Differences in Aortic Valve Inflammation and Remodeling in Chronic Severe Aortic Regurgitation.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Aortic regurgitation (AR) is more prevalent in male, although cellular and molecular mechanisms underlying the sex differences in prevalence and pathophysiology are unknown. This study evaluates the impact of sex on aortic valve (AV) inflammation and remodeling as well as the cellular differences in valvular interstitial cells (VICs) and valvular endothelial cells (VECs) in patients with AR. A total of 144 patients (27.

View Article and Find Full Text PDF

Protocol for isolating and purifying murine liver sinusoidal endothelial cells for in vitro culture and functional assays.

STAR Protoc

January 2025

Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. Electronic address:

Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and play a crucial role in liver function. Isolating LSECs is beneficial for their functional evaluation in vitro. Here, we provide a protocol for obtaining purified LSECs from mice via gradient centrifugation and magnetic cell sorting (MACS), yielding cells suitable for culture and downstream analyses.

View Article and Find Full Text PDF

Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!