NRP-2 is a high-affinity kinase-deficient receptor for ligands belonging to the class 3 semaphorin and vascular endothelial growth factor families. NRP-2 has been detected on the surface of several types of human cancer cells, but its expression and function in gastrointestinal (GI) cancer cells remains to be determined. We sought to determine the function of NRP-2 in mediating downstream signals regulating the growth and survival of human gastrointestinal cancer cells. In human gastric cancer specimens, NRP-2 expression was detected in tumor tissues but not in adjacent normal mucosa. In CNDT 2.5 cells, shRNA mediated knockdown NRP-2 expression led to decreased migration and invasion in vitro (p<0.01). Focused gene-array analysis demonstrated that loss of NRP-2 reduced the expression of a critical metastasis mediator gene, S100A4. Steady-state levels and function of β-catenin, a known regulator of S100A4, were also decreased in the shNRP-2 clones. Furthermore, knockdown of NRP-2 sensitized CNDT 2.5 cells in vitro to 5FU toxicity. This effect was associated with activation of caspases 3 and 7, cleavage of PARP, and downregulation of Bcl-2. In vivo growth of CNDT 2.5 cells in the livers of nude mice was significantly decreased in the shNRP-2 group (p<0.05). Intraperitoneal administration of NRP-2 siRNA-DOPC decreased the tumor burden in mice (p = 0.01). Collectively, our results demonstrate that tumor cell-derived NRP-2 mediates critical survival signaling in gastrointestinal cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197582PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023208PLOS

Publication Analysis

Top Keywords

cancer cells
12
survival human
8
gastrointestinal cancer
8
nrp-2 expression
8
cancer
5
nrp-2
5
neuropilin-2 mediated
4
mediated β-catenin
4
β-catenin signaling
4
signaling survival
4

Similar Publications

Concomitant Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma and Non-Immunoglobulin M Plasma Cell Neoplasm.

Arch Pathol Lab Med

January 2025

the Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles (Petersen, Stuart, He, Ju, Ghezavati, Siddiqi, Wang).

Context.—: The co-occurrence of plasma cell neoplasm (PCN) and lymphoplasmacytic lymphoma (LPL) is rare, and their clonal relationship remains unclear.

Objective.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.

Cell Mol Life Sci

January 2025

State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.

Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!