Changes in mitochondrial DNA (mtDNA) content in cancers have been reported with controversial results, probably due to small sample size and variable pathological conditions. In this study, mtDNA content in 302 breast tumor/surrounding normal tissue pairs were evaluated and correlated with the clinico-pathological characteristics of tumors. Overall, mtDNA content in tumor tissues is significantly lower than that in the surrounding normal tissues, P < 0.00001. MtDNA content in tumor tissues decreased with increasing tumor size. However, when the tumor is very large (>50 cm(3)), mtDNA content started to increase. Similarly, mtDNA content decreased from grades 0 and I to grade II tumors, but increased from grade II to grade III tumors. Tumors with somatic mtDNA alterations in coding region have significantly higher mtDNA content than tumors without somatic mtDNA alterations (P < 0.001). Tumors with somatic mtDNA alterations in the D-Loop region have significantly lower mtDNA content (P < 0.001). Patients with both low and high mtDNA content in tumor tissue have significantly higher hazard of death than patients with median levels of mtDNA content. mtDNA content in tumor tissues change with tumor size, grade, and ER/PR status; significant deviation from the median level of mtDNA content is associated with poor survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199065 | PMC |
http://dx.doi.org/10.1155/2011/496189 | DOI Listing |
Elife
December 2024
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
Liaoning Ocean and Fisheries Science Research Institute/Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs/Key Laboratory of Molecular Biology for Marine Fishery, Dalian 116023, Liaoning, China.
We investigated food composition and feeding selectivity of jellyfish () from the coastal aquaculture ponds in Liaodong Bay by DNA metabarcoding technology. The DNA from environmental water samples and stomach contents of were extracted and sequenced by high-throughput sequencing with 18S rDNA V4 region and mitochondrial cytochrome c oxidase subunit I (COI) as metabarcoding markers. Based on 18S rDNA metabarcoding, we detected 27 phyla in the stomach contents of , in which Mollusc was the dominant phylum followed by Arthropod, and 34 phyla in the environmental water samples, in which Pyrrophyta was the dominant phylum followed by Ciliophora and Ascomycota.
View Article and Find Full Text PDFRedox Biochem Chem
December 2024
Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.
While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.
View Article and Find Full Text PDFJ Appl Physiol (1985)
December 2024
Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
December 2024
Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China.
Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.
Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!