Background: The preservation or reduction of alveolar ridge resorption following tooth extraction is important in patients especially for those intended for implants at a later stage. One way to achieve this is by using membranes, graft materials, and biodegradable space fillers to prevent alveolar bone resorption and promote regeneration. A major attraction for using biodegradable and biocompatible polymers as space fillers for ridge preservation is their safety profile in comparison to xenograft materials like lyophilized bone and collagen.

Materials And Methods: Biocompatible polylactide space fillers were fabricated by fusing porous polylactide particles. The sponges were loaded with drugs by placing them in the respective solutions. Pseudomonas aeruginosa was isolated from a chronic periodontitis patient and in vitro anti-microbial evaluation was done with the drug loaded sponges.

Results: Chlorhexidine loaded space filler showed significant anti microbial effect against multiple drug resistant Pseudomonas aeruginosa isolated from a patient with chronic periodontitis.

Conclusion: The results of this study indicate that biodegradable drug releasing polylactide space fillers has the potential to be used for ridge preservation following tooth extraction. Release of drugs in the socket may prove useful in preventing development of alveolar osteitis post extraction which can interfere with normal healing of the socket. Synthetic biodegradable polymers also exhibit a controlled degradation rate to achieve complete resorption within the intended time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200023PMC
http://dx.doi.org/10.4103/0972-124X.85671DOI Listing

Publication Analysis

Top Keywords

space fillers
16
polylactide space
12
ridge preservation
12
tooth extraction
12
anti-microbial evaluation
8
evaluation drug
8
drug loaded
8
space filler
8
preservation tooth
8
pseudomonas aeruginosa
8

Similar Publications

Integrating Aerogel into van der Waals Crystals for a High-Strength Thermal Insulator.

Nano Lett

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Achieving low thermal conductivity and high mechanical strength presents a material design challenge due to intrinsic trade-offs, such as the aerogel's porosity, impeding applications in construction, industry, and aerospace. This study presents a composite that incorporates a silica aerogel within a thermally expanded 2D layered vermiculite matrix. This design overcomes limitations imposed by van der Waals bonding lengths, typically less than 10 Å, which hinder aerogel integration with van der Waals crystals.

View Article and Find Full Text PDF

In recent years, the search for more sustainable fillers for elastomeric composites than silica and carbon black has been underway. In this work, silanized starch was used as an innovative filler for elastomeric composites. Corn starch was chemically modified by silanization (with n-octadecyltrimethoxysilane) via a condensation reaction to produce a hydrophobic starch.

View Article and Find Full Text PDF

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

Chitosan-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review.

Int J Biol Macromol

January 2025

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia. Electronic address:

Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications.

View Article and Find Full Text PDF

An Oriented Interpenetrating Network Structure Multi-Stimuli Responsive Hydrogel.

Macromol Rapid Commun

January 2025

Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.

As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!