During the past two decades new techniques have been developed to directly test the dogma that neuronal structure is correlated with neuronal function. In the earliest experiments, Procion yellow was injected into neurons after they had been characterized physiologically; these neurons were then viewed through the light microscope. Recent advances in the method generally employ horseradish peroxidase as the dye which is injected since it diffuses quite readily throughout the injected neuron and produces a stable reaction product for both light and electron microscopic studies. This review explores the utility of examining synaptic circuitry after physiologically recording from axons or neurons and then injecting horseradish peroxidase into them. As a model system, we studied the cat lateral geniculate nucleus and investigated, at the electron microscopic level, the synaptic contribution to this nucleus from retinogeniculate axons, from interneurons, and from the axon collaterals of neurons that project to visual cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.1060150406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!