Alopecia areata (AA) is a common hair loss disorder, which is thought to be a tissue-specific autoimmune disease. Previous research has identified a few AA susceptibility genes, most of which are implicated in autoimmunity. To identify new genetic variants and further elucidate the genetic basis of AA, we performed a genome-wide association study using the strategy of pooled DNA genotyping (729 cases, 656 controls). The strongest association was for variants in the HLA region, which confirms the validity of the pooling strategy. The selected top 61 single-nucleotide polymorphisms (SNPs) were analyzed in an independent replication sample (454 cases, 1364 controls). Only one SNP outside of the HLA region (rs304650) showed significant association. This SNP was then analyzed in a second independent replication sample (537 cases, 657 controls). The finding was not replicated on a significant level, but showed the same tendency. A combined analysis of the two replication samples was then performed, and the SNP rs304650 showed significant association with P=3.43 × 10(-4) (OR=1.24 (1.10-1.39)). This SNP maps to an intronic region of the SPATA5 (spermatogenesis-associated protein 5) gene on chromosome 4. The results therefore suggest the SPATA5 locus is a new susceptibility locus for AA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283178 | PMC |
http://dx.doi.org/10.1038/ejhg.2011.185 | DOI Listing |
Am J Reprod Immunol
February 2025
Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China.
Background: Our previous study has identified an association of a single nucleotide polymorphism (SNP) in the miR-423 gene with recurrent spontaneous abortion (RSA). The presence of additional RSA-linked SNPs in the miR-423 gene remains unclear.
Methods: We evaluated polymorphisms in the coding region of miR-423 in Han Chinese women with unexplained RSA (URSA).
Nutrition plays a central role in healthy living, however, extensive variability in individual responses to dietary interventions complicates our understanding of its effects. Here we present a comprehensive study utilizing the Genetic Reference Panel (DGRP), investigating how genetic variation influences responses to diet and aging. Quantitative genetic analyses of the impact of dietary restriction on lifespan, locomotor activity, dry weight, and heat knockdown time were performed.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi China.
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory.
View Article and Find Full Text PDFNutrients
January 2025
Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI-IRCCS-FLMM), 00167 Rome, Italy.
Unlabelled: Single nucleotide polymorphisms (SNPs) found to be associated with Androgenetic Alopecia (AGA) to date, are characterized by an apparent reduced penetrance into the phenotype suggesting a role of other factors in the etiology of AGA.
Objective: We conducted a study to investigate the role of specific allelic variants in AGA controlling for nutritional and lifestyle factors.
Methods: Individual patterns of SNPs present in the baldness susceptibility locus at 20p11 (rs1160312 and rs6113491) or close to the androgen receptor (AR) gene in chromosome X (rs1041668) were investigated in 212 male subjects.
Int J Mol Sci
January 2025
Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK.
The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!