D-Glyceric acid (D-GA) calcium has been reported to accelerate ethanol oxidation in vivo in rats (Eriksson et al., Metabolism, 56, 895-898 (2007)). However, no other reports have shown that D-GA can reduce the harmful effects of ethanol. In this study, the effects of D-, L-, and DL-GA calcium on ethanol-dosed gastric cell viability were investigated using human gastric carcinoma cells (Kato III) and normal rat gastric mucosa cells (RGM1). Addition of 2% and 3 % ethanol to Kato III and RGM1 cells, respectively, decreased their cell viability by approximately 20-50 % after 24 or 72 h of cultivation. In 2 % ethanol-dosed Kato III cells cultivated for 24 h, addition of 0.002-20 µg/mL D- and L-GA calcium did not affect cell viability. Similarly, addition of less than 20 µg/mL DL-GA calcium did not affect cell viability. However, when 20 µg/mL DL-GA calcium was added, cell viability increased by 35.7 % after 72 h of incubation, compared to the viability of control cells without ethanol or GA. Addition of 20 µg/mL DL-GA calcium to 3 % ethanol-dosed RGM1 cells cultivated for 24 or 72 h also increased cell viability up to those observed in control cells. These results suggest that a racemic mixture of GA may have the strongest effect on enhancing the viability of ethanol-exposed cells.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.60.585DOI Listing

Publication Analysis

Top Keywords

cell viability
24
dl-ga calcium
16
kato iii
12
µg/ml dl-ga
12
viability
9
cells
9
ethanol-dosed gastric
8
calcium ethanol-dosed
8
rgm1 cells
8
cells cultivated
8

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Background: The role of activating alterations in the MAPK pathway in predicting immunotherapy efficacy in lung squamous cell carcinoma (LSCC) patients is largely unknown. The aims of the randomized, phase II SQUINT trial were to assess the efficacy of nivolumab plus ipilimumab (NI) versus platinum-based chemotherapy plus nivolumab (N-CT) and to identify clinically available biomarkers of response to immunotherapy in patients with advanced or metastatic LSCC.

Methods: SQUINT was an open-label, randomized, parallel, non-comparative, phase II trial of NI versus N-CT in chemo-naïve, metastatic or recurrent LSCC adult patients.

View Article and Find Full Text PDF

Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.

View Article and Find Full Text PDF

Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!