Mechanical accuracy of a stereotactic irradiation system using a micro multi-leaf collimator (mMLC), Elekta DMLC, has been evaluated. Measurements were made to obtain transmission, leakage, penumbra, and positioning accuracy of the DMLC leaf for a 6 MV photon beam. Mechanical accuracy and long term stability of a linac isocenter was also evaluated. The resulting transmission, along a line perpendicular to the leaf movement, was 0.31±0.01%, and the leakage from the closed opposing leaf pairs was 0.39±0.01%. The measured penumbra, at a depth incurring maximum dose, was 2.37±0.16 mm toward the leaf end and 2.14±0.18 mm toward the leaf side for various field sizes. The leaf gap width error, of 0.10±0.08 mm, was obtained by analyzing picket fence test results. The maximum leaf positioning error, of 0.14±0.06 mm, was obtained by analyzing the log file for a various gantry angles during an arc delivery. The isocenter accuracy was within a radius of 1 mm, without any recalibration for two years. In conclusion, our stereotactic irradiation system using DMLC was capable of providing accurate stereotactic treatment.

Download full-text PDF

Source
http://dx.doi.org/10.6009/jjrt.67.1267DOI Listing

Publication Analysis

Top Keywords

stereotactic irradiation
12
irradiation system
12
accuracy stereotactic
8
system micro
8
micro multi-leaf
8
mechanical accuracy
8
leaf
7
[mechanical accuracy
4
stereotactic
4
multi-leaf collimator]
4

Similar Publications

CT-guided adaptive radiotherapy (ART) for the treatment of pancreatic adenocarcinoma is rapidly increasing and has been shown to provide advanced treatment tools comparable to magnetic resonance imaging (MRI)-guided adaptive therapy. Here, we provide the first case report of a local pancreatic recurrence treatment after definitive resection using cone beam computed tomography (CBCT)-guided ART (CT-guided ART) enabled by HyperSight imaging (Varian Medical Systems, Inc., Palo Alto, CA, USA) for daily delineation of organs-at-risk (OARs) and target to improve the quality of online ART.

View Article and Find Full Text PDF

Pulmonary Stereotactic Body Radiotherapy of Oligometastatic Head-and-Neck Squamous Cell Carcinoma - A multicenter retrospective study.

Int J Radiat Oncol Biol Phys

January 2025

Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany; Comprehensive Cancer Center Central Germany, Partner Site Leipzig, Leipzig, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner site DKTK, Freiburg, Germany. Electronic address:

Purpose: The value of stereotactic body radiotherapy (SBRT) in patients with oligometastatic head-and-neck squamous cell carcinoma (HNSCC) remains unclear, as existing evidence is primarily derived from retrospective single-center analyses with small patient cohorts. This study aimed to evaluate the outcomes of pulmonary SBRT in patients with oligometastatic HNSCC and to identify factors associated with survival.

Methods: This trinational multicenter cohort study, including 16 centers from XXX, XXX, and XXX, retrospectively analyzed patients with oligometastatic HNSCC undergoing SBRT for pulmonary metastases between 2010 and 2023.

View Article and Find Full Text PDF

Exploration of an adaptive proton therapy strategy using CBCT with the concept of digital twins.

Phys Med Biol

January 2025

Department of Radiology Oncology, Emory University, Clifton Rd, Atlanta, Georgia, 30322-1007, UNITED STATES.

This study aims to develop a digital twin (DT) framework to achieve adaptive proton prostate stereotactic body radiation therapy (SBRT) with fast treatment plan selection and patient-specific clinical target volume (CTV) setup uncertainty. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes.

View Article and Find Full Text PDF

Background: Recurrent high-grade gliomas present a therapeutic challenge. Repeat surgery, re-irradiation, and systemic therapy have been explored, with re-irradiation requiring precise tumor relapse delineation and advanced dosimetric techniques. This study aims to evaluate the effectiveness and tolerability of re-irradiation using Hypofractionated Stereotactic Radiation (HFSRT) schedules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!