Different types of NPs (nanoparticles) are currently under development for diagnostic and therapeutic applications in the biomedical field, yet our knowledge about their possible effects and fate in living cells is still limited. In the present study, we examined the cellular response of human brain-derived endothelial cells to NPs of different size and structure: uncoated and oleic acid-coated iron oxide NPs (8-9 nm core), fluorescent 25 and 50 nm silica NPs, TiO2 NPs (21 nm mean core diameter) and PLGA [poly(lactic-co-glycolic acid)]-PEO [poly(ethylene oxide)] polymeric NPs (150 nm). We evaluated their uptake by the cells, and their localization, generation of oxidative stress and DNA-damaging effects in exposed cells. We show that NPs are internalized by human brain-derived endothelial cells; however, the extent of their intracellular uptake is dependent on the characteristics of the NPs. After their uptake by human brain-derived endothelial cells NPs are transported into the lysosomes of these cells, where they enhance the activation of lysosomal proteases. In brain-derived endothelial cells, NPs induce the production of an oxidative stress after exposure to iron oxide and TiO2 NPs, which is correlated with an increase in DNA strand breaks and defensive mechanisms that ultimately induce an autophagy process in the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20111252 | DOI Listing |
Brain Res Bull
January 2025
School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China. Electronic address:
Front Mol Biosci
December 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
J Affect Disord
December 2024
Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China. Electronic address:
Objective: Cognitive impairment occurs throughout the entire course of and affects the work and life of patients with major depressive disorder (MDD). The gut microbiota, kynurenine pathway (KP) and inflammatory response may have important roles in the mechanism of cognitive impairment in MDD patients. Consequently, our goal was to investigate the association among the gut microbiota, inflammation, KP, and cognition in MDD.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India. Electronic address:
Am J Physiol Cell Physiol
January 2025
EFS, INSERM, UMR 1098 RIGHT, Université de Franche-Comté, Besançon, France.
The present study investigated the role of endothelial brain-derived neurotrophic factor (BDNF) in cognition. Male adult mice with a selective knockout of BDNF in endothelial cells () and their wild-type (WT) littermates were subjected to tests for detection of anxiety- and depression-like behaviors and impaired recognition memory. Neuronal activity and synaptogenesis were assessed from hippocampal levels of c-fos and synaptophysin, respectively, and cerebral capillary density from forebrain levels of CD31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!