In recent years, localized surface plasmon resonance (LSPR) spectroscopy advancements have made it a sensitive, flexible tool for probing biological interactions. Here, we describe the basic principles of this nanoparticle-based sensing technique, the ways nanoparticles can be tailored to optimize sensing, and examples of novel LSPR spectroscopy applications. These include detecting small molecules via protein conformational changes and resonance LSPR spectroscopy, as well as coupling LSPR with mass spectrometry to identify bound analytes. The last few sections highlight the advantages of single nanoparticle LSPR, in that it lowers limits of detection, allows multiplexing on the nanometer scale, and enables free diffusion of sensors in solution. The cases discussed herein illustrate creative ways that LSPR spectroscopy has been improved to achieve new sensing capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm.11.117 | DOI Listing |
Polymers (Basel)
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia.
Hydrogel nanocomposites that respond to external stimuli and possess switchable electrical properties are considered as emerging materials with potential uses in electrical, electrochemical, and biological devices. This work reports the synthesis and characterization of thermo-responsive and electroconductive hydrogel nanocomposites based on poly(-isopropylacrylamide) (PNiPAAm) and gold nanoparticles (nanospheres-AuNPs and nanorods-AuNRs) using two different synthetic techniques. Method I involved γ-irradiation-induced crosslinking of a polymer matrix (hydrogel), followed by radiolytic formation of gold nanoparticles, while Method II included the chemical synthesis of nanoparticles, followed by radiolytic formation of a polymer matrix around the gold nanoparticles.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Due to their distinctive optical, electrical, and catalytic characteristics, gold nanoparticles (AuNPs) have found increasing use for a wide range of applications, including biomedicine and catalysis. Inherent agglomeration propensities impair their functional qualities, stability, and biocompatibility. This work investigates the potential applications of the cataractous eye protein isolate (CEPI), a waste product rich in proteins from cataract surgery, as a novel AuNP stabilizing agent.
View Article and Find Full Text PDFRSC Adv
December 2024
School of Engineering and Sciences, Tecnológico de Monterrey Av. Eugenio Garza Sada 2501 Monterrey 64849 N.L. Mexico +52 8183582000.
Breast cancer poses a global threat with rising incidence and high mortality. Conventional treatments, including chemotherapy, radiation, surgery, and immunotherapy, have side effects, such as resistance issues and adverse effects due to genetic mutations. Meanwhile, noble metal nanoparticles (NPs) synthesized using environmentally friendly methods offer alternative treatments.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China. Electronic address:
Anal Chim Acta
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
Background: Deoxynivalenol is one of the common fungal toxins in processed grain foods. It has the characteristic of high temperature resistance. Dietary intake of DON contaminated food can cause adverse symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!