Engineering the multifunctional surface on magnetic nanoparticles for targeted biomedical applications: a chemical approach.

Nanomedicine (Lond)

Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Published: October 2011

Research on multifunctional magnetic nanoparticles for biomedicines has experienced rapid growth because of the progressive advancements in nanotechnology and in modern biotechnology. However, the design of multifunctional surfaces on magnetic nanoparticles generally lacks a systematic approach. This article will try to unfold the complex chemistry in constructing a multifunctional surface, and layout a simplified guide for researchers to follow, particularly those from nonchemistry backgrounds. A number of design principles with critical rationales are to be introduced and followed by four main strategies: multifunctionality on a polymer chain, use of block copolymers, cocondensation of alkoxysilanes and of the secondary reaction on groups, with a particular reference to the use of alkoxysilanes. Nanoparticles of higher complexity are expected to be reported in the near future. These advanced systems are likely to be designed from some more logical, strategic mechanisms rather than the 'pick-and-mix' approaches we have seen in the last decade.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm.11.132DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
12
multifunctional surface
8
engineering multifunctional
4
surface magnetic
4
nanoparticles
4
nanoparticles targeted
4
targeted biomedical
4
biomedical applications
4
applications chemical
4
chemical approach
4

Similar Publications

A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts.

Pharmaceutics

January 2025

Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.

Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.

View Article and Find Full Text PDF

: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.

View Article and Find Full Text PDF

Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges.

Pharmaceutics

January 2025

Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.

Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer.

View Article and Find Full Text PDF

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Development and Characterization of Hyaluronic Acid Graft-Modified Polydopamine Nanoparticles for Antibacterial Studies.

Polymers (Basel)

January 2025

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.

The problem of antibiotic abuse and drug resistance is becoming increasingly serious. In recent years, polydopamine (PDA) nanoparticles have been recognized as a potential antimicrobial material for photothermal therapy (PTT) due to their excellent photothermal conversion efficiency and unique antimicrobial ability. PDA is capable of rapidly converting light energy into heat energy under near-infrared (NIR) light irradiation to kill bacteria efficiently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!