Purpose: Downregulation of lumican and keratocan expression is an undesirable phenotypic change that occurs during corneal wound healing. The present study was intended to determine whether the activation of Jun N-terminal kinase (JNK)-signaling pathway is involved in their downregulation in TGF-β1- and FGF-2-activated keratocytes.
Methods: Keratocytes, isolated from rabbit corneal stroma, and cultured in a serum-free medium, pretreated or not treated with JNK inhibitor (SP600125), were activated with FGF-2/heparin sulfate (HS) or TGF-β1 in the presence or absence of SP600125. In another set of experiments, keratocytes were transfected with JNK1/2 Dicer-substrate RNA (DsiRNA) and then activated with TGF-β1 or FGF-2/HS. Specific phenotypic changes were analyzed immunocytochemically and correlated with Western blot analyses. The relative levels of specific mRNAs were estimated by quantitative RT-PCR using specific reagents.
Results: The FGF-2/HS- or TGF-β-induced activation of corneal stromal keratocytes to fibroblast- or myofibroblast-phenotype, respectively, resulted in marked decreases in cell surface-associated and secreted keratan sulfate proteoglycans (KSPGs). Both keratocan and lumican proteins and their mRNAs were downregulated in the activated keratocytes. However, JNK inhibition during the activation of keratocytes, pretreated with the JNK inhibitor, suppressed the reduction in the cell-surface associated and secreted KSPGs (lumican and keratocan), and their mRNA transcripts. Downregulation of total KSPGs and their mRNAs was also inhibited by decreasing JNK1 and JNK2 levels via JNK1/2 DsiRNA transfection of keratocytes before their activation.
Conclusions: Extrapolating from the present study, FGF-2- and TGF-β1-activation of JNK signaling pathway may be partly responsible for the downregulation of keratocan and lumican expression in activated corneal keratocytes observed during corneal stromal wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231797 | PMC |
http://dx.doi.org/10.1167/iovs.11-8078 | DOI Listing |
Curr Eye Res
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Saar, Germany.
Purpose: Our aim was to examine the expression of PAX6 and keratocyte-specific markers in human limbal stromal cells (LSCs) in congenital aniridia (AN) and in healthy corneas, .
Methods: Primary human LSCs were extracted from individuals with aniridia (AN-LSCs) ( = 8) and from healthy corneas (LSCs) ( = 8). The cells were cultured in either normal-glucose serum-containing cell culture medium (NGSC-medium) or low-glucose serum-free cell culture medium (LGSF-medium).
BMJ Open Ophthalmol
November 2024
Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
Objective: The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes.
View Article and Find Full Text PDFBMC Med
November 2024
Department of Histology, Tissue Engineering Group, School of Medicine, University of Granada, Granada, Spain.
Background: Human artificial corneas (HAC) generated by tissue engineering recently demonstrated clinical usefulness in the management of complex corneal diseases. However, the biological mechanisms associated to their regenerative potential need to be elucidated.
Methods: In the present work, we generated HAC using nanostructured fibrin-agarose biomaterials with cultured corneal epithelial and stromal cells, and we compared the structure and histochemical and immunohistochemical profiles of HAC with control native corneas (CTR-C) and limbus (CTR-L) to determine the level of biomimicry of the HAC with these two native organs.
Res Sq
February 2024
Department of Mechanical Engineering, University of Utah, Salt Lake City, USA.
Curvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts.
View Article and Find Full Text PDFCornea
May 2024
Department of Ophthalmology, Peking University Third Hospital, Beijing, China ; and.
Purpose: The aims of this study were to construct a mesenchymal stem cell (MSC)-laden in situ-forming hydrogel and study its effects on preventing corneal stromal opacity.
Methods: The native gellan gum was modified by high temperature and pressure, and the rabbit bone marrow MSCs were encapsulated before adding Ca 2+ to initiate cross-linking. The effects of the hydrogel on 3D culture and gene expression of the rabbit bone marrow MSCs were observed in vitro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!