Droplet microfluidics, which can generate monodisperse droplets or bubbles in unlimited numbers, at high speed and with complex structures, have been extensively investigated in chemical and biological fields. However, most current methods for fabricating microfluidic devices, such as glass etching, soft lithography in polydimethylsiloxane (PDMS) or assembly of glass capillaries, are usually either expensive or complicated. Here we report the fabrication of simple and cheap microfluidic devices based on patterned coverslips and microscope glass slides. The advantages of our approach for fabricating microfluidic devices lie in a simple process, inexpensive processing equipment and economical laboratory supplies. The fabricated microfluidic devices feature a flexible design of microchannels, easy spatial patterning of surface wettability, and good chemical compatibility and optical properties. We demonstrate their utilities for generation of monodisperse single and double emulsions with highly controllable flexibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1lc20629j | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.
View Article and Find Full Text PDFSci Adv
January 2025
Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA.
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Biological Design Center, Boston University, Boston, MA, USA.
Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor.
View Article and Find Full Text PDFLab Chip
January 2025
NASCENT Engineering Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.
Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!