On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.

Electrophoresis

BIOS, Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.

Published: November 2011

This article describes the development and full characterization of a microfluidic chip for electrofusion of human peripheral blood B-cells and mouse myeloma (NS-1) cells to generate hybridomas. The chip consists of an array of 783 traps, with dimensions that were optimized to obtain a final cell pairing efficiency of 33±6%. B cells were stained with a cytoplasmic stain CFDA to assess the different stages of cell fusion, i.e. dye transfer to NS-1 cells (initiating fusion) and membrane reorganization (advanced fusion). Six DC pulses of 100  μs (2.5  kV/cm) combined with an AC field (30  s, 2  MHz, 500  V/cm) and pronase treatment resulted in the highest electrofusion efficiency of paired cells (51±11%). Hybridoma formation, with a yield of 0.33 and 1.2%, was observed after culturing the fused cells for 14 days in conditioned medium. This work provides valuable leads to improve the current electrofusion protocols for the production of human antibodies for diagnostic and therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201100227DOI Listing

Publication Analysis

Top Keywords

chip electrofusion
8
mouse myeloma
8
ns-1 cells
8
cells
7
electrofusion single
4
single human
4
human cells
4
cells mouse
4
myeloma cells
4
cells efficient
4

Similar Publications

Microfluidic Chip for Cell Fusion and In Situ Separation of Fused Cells.

Anal Chem

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China.

Electrofusion is an effective method for fusing two cells into a hybrid cell, and this method is widely used in immunomedicine, gene recombination, and other related fields. Although cell pairing and electrofusion techniques have been accomplished with microfluidic devices, the purification and isolation of fused cells remains limited due to expensive instruments and complex operations. In this study, through the optimization of microstructures and electrodes combined with buffer substitution, the entire cell electrofusion process, including cell capture, pairing, electrofusion, and precise separation of the targeted fused cells, is achieved on a single chip.

View Article and Find Full Text PDF

Optical tweezer-assisted cell pairing and fusion for somatic cell nuclear transfer within an open microchannel.

Lab Chip

November 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Tianjin Key Laboratory of Intelligent Robotic (tjKLIR), Institute of Robotics and Automatic Information System (IRAIS), Nankai University, Tianjin 300350, China.

Somatic cell nuclear transfer (SCNT), referred to as somatic cell cloning, is a pivotal biotechnological technique utilized across various applications. Although robotic SCNT is currently available, the subsequent oocyte electrical activation/reconstructed embryo electrofusion is still manually completed by skilled operators, presenting challenges in efficient manipulation due to the uncontrollable positioning of the reconstructed embryo. This study introduces a robotic SCNT-electrofusion system to enable high-precision batch SCNT cloning.

View Article and Find Full Text PDF

Mechanism study on the influences of buffer osmotic pressure on microfluidic chip-based cell electrofusion.

APL Bioeng

June 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China.

Cell electrofusion is a key process in many research fields, such as genetics, immunology, and cross-breeding. The electrofusion efficiency is highly dependent on the buffer osmotic pressure properties. However, the mechanism by which the buffer osmotic pressure affects cell electrofusion has not been theoretically or numerically understood.

View Article and Find Full Text PDF

This study aimed to demonstrate the feasibility of generating tumor cell vaccine models by single-cell surgery in a microfluidic device that integrates one-to-one electrofusion, shear flow reseparation, and on-device culture. The device was microfabricated from polydimethylsiloxane (PDMS) and consisted of microorifices (aperture size: ∼3 μm) for one-to-one fusion, and microcages for on-device culture. Using the device, we could achieve one-to-one electrofusion of leukemic plasmacytoid dendritic cells (DC-like cells) and Jurkat cells with a fusion efficiency of ∼ 80%.

View Article and Find Full Text PDF

Local disruption of the blood-brain barrier (BBB) by pulsed electric fields shows significant potential for treating neurological conditions. Microfluidic BBB models can provide low-cost, controlled experiments with human cells and test a range of parameters for preclinical studies. We developed a multiplexed BBB device that can test a three-fold range of electric field magnitudes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!