Background: Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders.

Methods: We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene.

Results: None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2-5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC.

Conclusions: We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1-5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3851/IMP1900DOI Listing

Publication Analysis

Top Keywords

ns3 protease
16
protease inhibitors
12
hcv genotypes
12
patients infected
8
hcv
8
infected hcv
8
genotypes 1-5
8
resistance mutations
8
protease
7
genotype
7

Similar Publications

With the escalation of viral infections in recent decades, including the COVID- 19 pandemic, viral infectious diseases have increasingly become a global concern, attracting significant attention. Among many viral epidemics, the dengue virus, an RNA virus from the Flaviviridae family, has been reported by the WHO as one of the most prevalent mosquito-borne diseases, infecting roughly 400 million people yearly and spreading across all continents worldwide. In the last two decades, researchers from academia and industry have diligently studied many aspects of the virus, including its structure, life cycle, potential therapeutic agents, and vaccines.

View Article and Find Full Text PDF

Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic .

Viruses

December 2024

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.

Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.

View Article and Find Full Text PDF

Objective: The emergence of resistance-associated substitutions (RASs) poses a significant challenge to the effective treatment of hepatitis C virus (HCV) infection using direct-acting antivirals. This study's objective was to observe the prevalence of HCV genotypes and RAS within the Former Soviet Union (FSU) countries.

Methods: We analysed 60 NS3, 313 NS5A and 1119 NS5B sequences of HCV deposited in open-access databases from 11 FSU countries for the prevalence of genotypes and the presence of RAS using the Geno2Pheno software.

View Article and Find Full Text PDF

Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.

View Article and Find Full Text PDF

Introduction: The purpose of our study was to evaluate the safety, tolerability, and pharmacokinetics of furaprevir, a new highly selective hepatitis C virus NS3/4A protease inhibitor.

Methods: The study was divided into 2 parts: Part A (single ascending-dose study, SAD) and Part B (multiple ascending-dose study, MAD). A total of 62 healthy subjects were enrolled in the studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!