Fanconi anemia and Bloom's syndrome crosstalk through FANCJ-BLM helicase interaction.

Trends Genet

Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH) Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.

Published: January 2012

Fanconi anemia (FA) and Bloom's syndrome (BS) are rare hereditary chromosomal instability disorders. FA displays bone marrow failure, acute myeloid leukemia, and head and neck cancers, whereas BS is characterized by growth retardation, immunodeficiency, and a wide spectrum of cancers. The BLM gene mutated in BS encodes a DNA helicase that functions in a protein complex to suppress sister-chromatid exchange. Of the 15 FA genetic complementation groups implicated in interstrand crosslink repair, FANCJ encodes a DNA helicase involved in recombinational repair and replication stress response. Based on evidence that BLM and FANCJ interact we suggest that crosstalk between BLM and FA pathways is more complex than previously thought. We propose testable models for how FANCJ and BLM coordinate to help cells deal with stalled replication forks or double-strand breaks (DSB). Understanding how BLM and FANCJ cooperate will help to elucidate an important pathway for maintaining genomic stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249464PMC
http://dx.doi.org/10.1016/j.tig.2011.09.003DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
8
anemia bloom's
8
bloom's syndrome
8
encodes dna
8
dna helicase
8
blm fancj
8
blm
5
syndrome crosstalk
4
crosstalk fancj-blm
4
fancj-blm helicase
4

Similar Publications

Unveiling a pathogenic gene variant in a Mexican family with Fanconi anemia through next‑generation sequencing.

Exp Ther Med

March 2025

Human Genetics Institute 'Dr Enrique Corona Rivera', Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco 44340, México.

Fanconi anemia (FA) is the most common hereditary bone marrow failure syndrome, with an incidence of 1 in 5,000,000. This disease is caused by an alteration in one of the 23 genes associated with the FA/BRCA DNA repair pathway, which is responsible for repairing interstrand bridges generated during homologous recombination. FA has been associated with a predisposition to other types of neoplasm.

View Article and Find Full Text PDF

Ying Wai Chan spoke with Cell Reports about his journey in science and his recent paper in which he and his fellow authors identified a role of FANCM in promoting resistance to PARP inhibitors independently of the core Fanconi anemia complex.

View Article and Find Full Text PDF

Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).

Design: Cohort study with age-matched controls.

Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

USP1 in regulation of DNA repair pathways.

DNA Repair (Amst)

January 2025

School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Electronic address:

Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!