Background: The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs) 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed.
Results: A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black) membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655). Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R(2) = .9973) while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R(2) = .999).
Conclusion: A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216855 | PMC |
http://dx.doi.org/10.1186/1477-3155-9-48 | DOI Listing |
Langmuir
January 2025
Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
In this study, we developed zwitterionic surface coatings of carboxybetaine by mimicking natural melanogenesis. We synthesized an unnatural tyrosine-conjugated carboxybetaine (Tyr-CB) that undergoes melanin-like oxidation upon treatment with tyrosinase under various aqueous conditions. The thickness of the resulting poly(Tyr-CB) film was tuned by adjusting the pH during the coating process.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
Biol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!