During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4183068 | PMC |
http://dx.doi.org/10.1016/j.cellsig.2011.10.004 | DOI Listing |
Cancers (Basel)
January 2025
Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.
Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Andrology, The First Hospital of Jilin University, Changchun, China.
Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Urology, Tianjin First Central Hospital, Tianjin, China.
miR-155 exhibits variable expression in different tumors and fulfills diverse biological roles. However, specific molecular mechanisms by which miR-155-5p, which is under-expressed in prostate cancer (PCa), operates are yet to be elucidated. The role of the enhancer of zeste 2 (EZH2)/miR-155-5p axis in PCa was determined by using bioinformatics tools and performing luciferase reporter assay, chromatin immunoprecipitation PCR, CCK-8 assays, cell migration and invasion assays, RNA isolation, reverse transcription quantity (RT-qPCR) and Western blot.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
Background: Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, Jiangxi Province, China.
Background: Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial-mesenchymal transition (EMT) plays an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.
Objectives: The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!