A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale effects of antibiotics on P. aeruginosa. | LitMetric

Nanoscale effects of antibiotics on P. aeruginosa.

Nanomedicine

Centre National de la Recherche Scientifique, Laboratoire d'Analyse et d'Architecture des Systèmes, Toulouse, France.

Published: January 2012

Unlabelled: Studying living bacteria at the nanoscale in their native liquid environment opens an unexplored landscape. We focus on Pseudomonas aeruginosa and demonstrate how the cell wall is biophysically affected at the nanoscale by two reference antibiotics (ticarcillin and tobramycin). The elasticity of the cells drops dramatically after treatment (from 263 ± 70 kPa to 50 ± 18 and 24 ± 4 kPa, respectively on ticarcillin- and tobramycin-treated bacteria) and major micro- and nano-morphological modifications are observed (the surface roughness of native, ticarcillin- and tobramycin-treated bacteria are respectively 2.5, 0.8, and 4.4 nm for a surface area of 40,000 nm²). Thus the nanoscale approach in liquid is valid and can be extended.

From The Clinical Editor: Pseudomonas aeruginosa cell wall was demonstrated to be biophysically affected at the nanoscale by two reference antibiotics, ticarcillin, and tobramycin, with the elasticity dropping dramatically after treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2011.09.009DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
cell wall
8
biophysically nanoscale
8
nanoscale reference
8
reference antibiotics
8
antibiotics ticarcillin
8
ticarcillin tobramycin
8
tobramycin elasticity
8
dramatically treatment
8
ticarcillin- tobramycin-treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!