In the presented research, a novel, ultra sensitive biosensor for the impedimetric detection of vascular endothelial growth factor (VEGF) is introduced. The human vascular endothelial growth factor receptor 1 (VEGF-R1, Flt-1) was used as a biorecognition element for the first time. The immobilization of VEGF-R1 on glassy carbon electrodes was carried out using layer-by-layer covalent attachment of VEGF-R1. The electrochemical properties of the layers constructed on the electrodes were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The differences in electron transfer resistance (R(et)) between the working solution and the biosensor surface, recorded by the redox probe K(3)[Fe(CN)(6)]/K(4)[Fe(CN)(6)], confirmed the binding of VEGF to VEGF-R1. The new biosensor allowed a detection limit of 100 fg mL(-1) with a linear range of 100-600 fg mL(-1) to be obtained. The biosensor also exhibited good repeatability (with a correlation coefficient of 1.95%), and reproducibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2011.08.044 | DOI Listing |
Cytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFJ Neurochem
January 2025
Nantes Université, INRAE, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France.
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Thrust of Earth, Ocean and Atmospheric Sciences Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China.
Modulating the electronic structure of noble metals via electronic metal-support interaction (EMSI) has been proven effectively for facilitating molecular oxygen activation and catalytic oxidation reactions. Nevertheless, the investigation of the fundamental mechanisms underlying activity enhancement has primarily focused on metal oxides as supports, especially in the catalytic degradation of volatile organic compounds. In this study, a novel Pt catalyst supported on nitrogen-doped carbon encapsulating FeNi alloy, featuring ultrafine Pt nanoparticles, was synthesized.
View Article and Find Full Text PDFMediterr J Hematol Infect Dis
January 2025
Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy.
Multiple myeloma (MM) is a heterogeneous disease, with MM patients experiencing different clinical outcomes depending on the disease's biological features. Novel insights into the molecular mechanisms of MM have led to the introduction of sophisticated drugs, which dramatically improved patient treatment and survival. To date, young patients with newly diagnosed MM could experience a median overall survival (OS) of 10 years.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
School of Chemistry, South China Normal University, Guangzhou 510006, China.
High-voltage lithium-metal batteries (HVLMBs) are appealing candidates for next-generation high-energy rechargeable batteries, but their practical applications are still limited by the severe capacity degradation, attributed to the poor interfacial stability and compatibility between the electrode and the electrolyte. In this work, a 2D conjugated phthalocyanine framework (CPF) containing single atoms (SAs) of cobalt (CoSAs-CPF) is developed as a novel artificial solid-electrolyte interphase (SEI) in which a large amount of charge is transferred to the CPF skeleton due to the Lewis acid activity of the Co metal sites and the strong electron-absorbing property of the cyano group (-CN), greatly enhancing the adsorption of the Li and regulating the Li distribution toward dendrite-free LMBs, which are superior to most of the reported SEI membranes. As a result, the Li||Li symmetrical cell with CoSAs-CPF-modified Li anodes (CoSAs-CPF@Li) exhibits a low polarization with an area capacity of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!