Objective: To investigate the effect of opsonization of Rhodococcus equi with R. equi-specific antibodies in plasma on bacterial viability and phagocyte activation in a cell culture model of infection.
Sample: Neutrophils and monocyte-derived macrophages from 6 healthy 1-week-old foals and 1 adult horse.
Procedures: Foal and adult horse phagocytes were incubated with either opsonized or nonopsonized bacteria. Opsonization was achieved by use of plasma containing high or low concentrations of R. equi-specific antibodies. Phagocyte oxidative burst activity was measured by use of flow cytometry, and macrophage tumor necrosis factor (TNF)-α production was measured via an ELISA. Extracellular and intracellular bacterial viability was measured with a novel R. equi-luciferase construct that used a luminometer.
Results: Opsonized bacteria increased oxidative burst activity in adult horse phagocytes, and neutrophil activity was dependent on the concentration of specific antibody. Secretion of TNF-α was higher in macrophages infected with opsonized bacteria. Opsonization had no significant effect on bacterial viability in macrophages; however, extracellular bacterial viability was decreased in broth containing plasma with R. equi-specific antibodies, compared with viability in broth alone.
Conclusions And Clinical Relevance: The use of plasma enriched with specific antibodies for the opsonization of R. equi increased the activation of phagocytes and decreased bacterial viability in the extracellular space. Although opsonized R. equi increased TNF-α secretion and oxidative burst in macrophages, additional factors may be necessary for effective intracellular bacterial killing. These data have suggested a possible role of plasma antibody in protection of foals from R. equi pneumonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.72.11.1465 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Implants aim to restore skeletal dysfunction associated with ageing and trauma, yet infection and ineffective immune responses can lead to failure. This project characterized the microbiological and host cell responses to titanium alloy with or without electroplated metallic copper. Bacterial viability counting and scanning electron microscopy quantified and visualized the direct and indirect bactericidal effects of the Cu-electroplated titanium (Cu-Ep-Ti) against two different Staphylococcus aureus strains.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic.
fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of pathogens and to characterize the PEF-induced changes at the metabolomic level.
View Article and Find Full Text PDFGels
January 2025
Department of Dairy Science, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia.
Encapsulation in alginate hydrogel microspheres is an effective method for protecting and improving the survival of lactic acid bacteria in different environments. This research aims to expand the knowledge about the structure/property relationship of calcium alginate microspheres loaded with a mixture of autochthonous probiotic bacteria ( and ). A novel hydrogel formulation (FORMLAB) was prepared by ionic gelation and the molecular interactions between the FORMLAB constituents, surface morphology, structure, swelling degree, and release profile were characterized.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Environmental Pollution and Remediation Research Group, Department of Chemical Engineering, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4062, South Africa.
This study evaluates the potential of biorefinery and dairy wastewater as substrates for electricity generation in double chamber Microbial Fuel Cells (DCMFC), focusing on their microbial taxonomy and electrochemical viability. Taxonomic analysis using 16S/18S rDNA-targeted DGGE and high-throughput sequencing identified Proteobacteria as dominant in biorefinery biomass, followed by Firmicutes and Bacteriodota. In dairy biomass, Lactobacillus (77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!