Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.

Environ Sci Technol

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.

Published: December 2011

Pressure retarded osmosis has the potential to utilize the free energy of mixing when fresh river water flows into the sea for clean and renewable power generation. Here, we present a systematic investigation of the performance limiting phenomena in pressure retarded osmosis--external concentration polarization, internal concentration polarization, and reverse draw salt flux--and offer insights on the design criteria of a high performance pressure retarded osmosis power generation system. Thin-film composite polyamide membranes were chemically modified to produce a range of membrane transport properties, and the water and salt permeabilities were characterized to determine the underlying permeability-selectivity trade-off relationship. We show that power density is constrained by the trade-off between permeability and selectivity of the membrane active layer. This behavior is attributed to the opposing influence of the beneficial effect of membrane water permeability and the detrimental impact of reverse salt flux coupled with internal concentration polarization. Our analysis reveals the intricate influence of active and support layer properties on power density and demonstrates that membrane performance is maximized by tailoring the water and salt permeabilities to the structural parameters. An analytical parameter that quantifies the relative influence of each performance limiting phenomena is employed to identify the dominant effect restricting productivity. External concentration polarization is shown to be the main factor limiting performance at high power densities. Enhancement of the hydrodynamic flow conditions in the membrane feed channel reduces external concentration polarization and thus, yields improved power density. However, doing so will also incur additional operating costs due to the accompanying hydraulic pressure loss. This study demonstrates that by thoughtful selection of the membrane properties and hydrodynamic conditions, the detrimental effects that limit productivity in a pressure retarded osmosis power generation process can be methodically minimized to achieve high performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es203197eDOI Listing

Publication Analysis

Top Keywords

pressure retarded
20
concentration polarization
20
power generation
16
retarded osmosis
16
performance limiting
12
power density
12
power
8
limiting phenomena
8
internal concentration
8
high performance
8

Similar Publications

Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation.

View Article and Find Full Text PDF

Seawater reverse osmosis (SWRO)-pressure retarded osmosis (PRO) hybrid desalination system is being actively researched to reduce energy consumption by generating energy in the PRO. However, the SWRO-PRO hybrid system still faces the following challenges: low freshwater recovery and low energy generation. To resolve these challenges, this study first proposes a novel SWRO-Solar-driven desalination (SD)-PRO hybrid system for energy-efficient desalination.

View Article and Find Full Text PDF

Studies in humans and rodents show exercise in pregnancy can modulate maternal blood pressure, vascular volume, and placental efficiency, but whether exercise affects early uteroplacental vascular adaptations is unknown. To investigate this, CBA/J female mice mated with BALB/c males to generate healthy uncomplicated pregnancies (BALB/c-mated) or mated with DBA/2J males to generate abortion-prone pregnancies (DBA/2J-mated), were subjected to treadmill exercise (5 days/week, 10 m/min, 30 min/day for 6 weeks before and throughout pregnancy), or remained sedentary. In uncomplicated pregnancies, exercise caused symmetric fetal growth restriction in fetuses evidenced by reductions in fetal weight, crown-to-rump length, abdominal girth and biparietal diameter.

View Article and Find Full Text PDF

Forward osmosis (FO) technology, known for its minimal energy requirements, excellent resistance to fouling, and significant commercial potential, shows enormous promise in the development of sustainable technologies, especially with regard to seawater desalination and wastewater. In this study, we improved the performance of the FO membrane in terms of its mechanical strength and hydrophilic properties. Generally, the water flux () of polyisophenylbenzamide (PMIA) thin-film composite (TFC)-FO membranes is still inadequate for industrial applications.

View Article and Find Full Text PDF

Effects of High Pressure on In Vitro Bioavailability of Curcumin Loaded in Whey Protein Isolate/Carrageenan Composite Emulsion Gel: In Vitro Digestion Coupled with Cell Culture Model.

Foods

November 2024

Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.

The oral bioavailability of curcumin is inherently low, which significantly limits its application in food systems. The objective of this study was to evaluate the impact of high-pressure processing on the stability and bioaccessibility of curcumin within an emulsion gel during simulated gastrointestinal transit and to assess its cellular uptake. Our findings suggest that increasing pressure levels and high κ-carrageenan concentrations can enhance the stability of the curcumin delivery system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!