Suppression of the imprinted gene NNAT and X-chromosome gene activation in isogenic human iPS cells.

PLoS One

Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

Published: February 2012

Genetic comparison between human embryonic stem cells and induced pluripotent stem cells has been hampered by genetic variation. To solve this problem, we have developed an isogenic system that allows direct comparison of induced pluripotent stem cells (hiPSCs) to their genetically matched human embryonic stem cells (hESCs). We show that hiPSCs have a highly similar transcriptome to hESCs. Global transcriptional profiling identified 102-154 genes (>2 fold) that showed a difference between isogenic hiPSCs and hESCs. A stringent analysis identified NNAT as a key imprinted gene that was dysregulated in hiPSCs. Furthermore, a disproportionate number of X-chromosome localized genes were over-expressed in female hiPSCs. Our results indicate that despite a remarkably close transcriptome to hESCs, isogenic hiPSCs have alterations in imprinting and regulation of X-chromosome genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192059PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023436PLOS

Publication Analysis

Top Keywords

stem cells
16
imprinted gene
8
human embryonic
8
embryonic stem
8
induced pluripotent
8
pluripotent stem
8
transcriptome hescs
8
isogenic hipscs
8
hipscs
6
cells
5

Similar Publications

True cancer stem cells exhibit relative degrees of dormancy and genomic stability.

Neoplasia

January 2025

Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.

View Article and Find Full Text PDF

Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!