Spatial representation is an active process that requires complex multimodal integration from a large interacting network of cortical and subcortical structures. We sought to determine the role of cerebellar protein kinase C (PKC)-dependent plasticity in spatial navigation by recording the activity of hippocampal place cells in transgenic L7PKCI mice with selective disruption of PKC-dependent plasticity at parallel fiber-Purkinje cell synapses. Place cell properties were exclusively impaired when L7PKCI mice had to rely on self-motion cues. The behavioral consequence of such a deficit is evidenced here by selectively impaired navigation capabilities during a path integration task. Together, these results suggest that cerebellar PKC-dependent mechanisms are involved in processing self-motion signals essential to the shaping of hippocampal spatial representation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1207403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!