Unlabelled: The aim of this in vitro study was to assess the agreement among four techniques used as gold standard for the validation of methods for occlusal caries detection. Sixty-five human permanent molars were selected and one site in each occlusal surface was chosen as the test site. The teeth were cut and prepared according to each technique: stereomicroscopy without coloring (1), dye enhancement with rhodamine B (2) and fuchsine/acetic light green (3), and semi-quantitative microradiography (4). Digital photographs from each prepared tooth were assessed by three examiners for caries extension. Weighted kappa, as well as Friedman's test with multiple comparisons, was performed to compare all techniques and verify statistical significant differences.
Results: kappa values varied from 0.62 to 0.78, the latter being found by both dye enhancement methods. Friedman's test showed statistical significant difference (P < 0.001) and multiple comparison identified these differences among all techniques, except between both dye enhancement methods (rhodamine B and fuchsine/acetic light green). Cross-tabulation showed that the stereomicroscopy overscored the lesions. Both dye enhancement methods showed a good agreement, while stereomicroscopy overscored the lesions. Furthermore, the outcome of caries diagnostic tests may be influenced by the validation method applied. Dye enhancement methods seem to be reliable as gold standard methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.21097 | DOI Listing |
J Colloid Interface Sci
January 2025
Institute of Health Sciences, China Medical University, Shenyang 110122, China. Electronic address:
A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!