In vitro preparations of the neonatal rat spinal cord or brainstem are useful to investigate the organization of motor networks and their dysfunction in neurological disease models. Long-term spinal cord organotypic cultures can extend our understanding of such pathophysiological processes over longer times. It is, however, surprising that detailed descriptions of the type (and number) of neurons and glia in such preparations are currently unavailable to evaluate cell-selectivity of experimental damage. The focus of the present immunohistochemical study is the novel characterization of the cell population in the lumbar locomotor region of the rat spinal cord and in the brainstem motor nucleus hypoglossus at 0-4 postnatal days, and its comparison with spinal organotypic cultures at 2-22 days in vitro. In the nucleus hypoglossus, neurons were 40% of all cells and 80% of these were motoneurons. Astrocytes (35% of total cells) were the main glial cells, while microglia was <10%. In the spinal gray matter, the highest neuronal density was in the dorsal horn (>80%) and the lowest in the ventral horn (≤57%) with inverse astroglia numbers and few microglia. The number of neurons (including motoneurons) and astrocytes was stable after birth. Like in the spinal cord, motoneurons in organotypic spinal culture were <10% of ventral horn cells, with neurons <40%, and the rest made up by glia. The present report indicates a comparable degree of neuronal and glial maturation in brainstem and spinal motor nuclei, and that this condition is also observed in 3-week-old organotypic cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dneu.20991 | DOI Listing |
Alzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFBackground: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
"Dual Perspectives" integrates multiple MRI scans, creating a nuanced synthesis of grey matter and diffusion-based regional connections. This rendering holds particular significance in the realm of Alzheimer's and dementia research by offering a comprehensive examination of data crucial for understanding these complex neurodegenerative conditions. The inclusion of grey matter provides a detailed insight into the structural composition of the brain.
View Article and Find Full Text PDFStroke
January 2025
Department of Neurology, New York University Grossman School of Medicine, NY. (C.C., H.A., A.K., S.M.K.).
J Exerc Rehabil
December 2024
Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea.
The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!