The natural transmission cycle of Yellow Fever (YF) involves tree hole breeding mosquitoes and a wide array of nonhuman primates (NHP), including monkeys and apes. Some Neotropical monkeys (howler monkeys, genus Alouatta) develop fatal YF virus (YFV) infections similar to those reported in humans, even with minimum exposure to the infection. Epizootics in wild primates may be indicating YFV circulation, and the surveillance of such outbreaks in wildlife is an important tool to help prevent human infection. In 2001, surveillance activities successfully identified YF-related death in a black-and-gold howler monkey (Alouatta caraya), Rio Grande do Sul State (RGS) in southern Brazil, and the YFV was isolated from a species of forest-dwelling mosquito (Haemagogus leucocelaenus). These findings led the State Secretariat of Health to initiate a monitoring program for YF and other 18 arboviral infections in Alouatta monkeys. The monitoring program included monkey captures, reporting of monkey casualties by municipalities, and subsequent investigations. If monkey carcasses were found in forests, samples were collected in a standardized manner and this practice resulted in increased reporting of outbreaks. In October 2008, a single howler monkey in a northwestern RGS municipality was confirmed to have died from YF. From October 2008 to June 2009, 2,013 monkey deaths were reported (830 A. caraya and 1,183 A. guariba clamitans). Viruses isolation in blood, viscera, and/or immunohistochemistry led to the detection of YF in 204 of 297 (69%) (154 A. g. clamitans and 50 A. caraya) dead Alouatta monkeys tested. The number of municipalities with confirmed YFV circulation in howlers increased from 2 to 67 and 21 confirmed human cases occurred. This surveillance system was successful in identifying the largest YF outbreak affecting wild NHP ever recorded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajp.21010 | DOI Listing |
Between October 2021 and February 2022, there was an outbreak of Yellow fever that spread within several districts in the northern part of Ghana. Febrile illnesses such as Yellow fever are often misdiagnosed as malaria and vice versa, which delays appropriate management and treatment. Hence, the true burden of Yellow fever and malaria are mostly underestimated.
View Article and Find Full Text PDFEur J Public Health
January 2025
Department of Community Health, Amref International University, Nairobi, Kenya.
The Chikungunya virus (CHIKV) presents substantial public health challenges in the Eastern Mediterranean Region (EMR), with its prevalence and interaction with other arboviruses (ABVs) remaining poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CHIKV and its association with other ABVs, such as dengue virus (DENV), Rift Valley fever virus (RVFV), malaria, and yellow fever virus (YFV), in the EMR. We systematically searched databases including PubMed, Embase, Web of Science, Scopus, Cochrane Library, CINAHL, PsycINFO, and ScienceDirect to identify epidemiological studies that report CHIKV prevalence and provide odds ratios (ORs) for CHIKV compared to other ABVs.
View Article and Find Full Text PDFTravel Med Infect Dis
January 2025
University of Zürich, Epidemiology, Biostatistics and Prevention Institute, Hirschengraben 84, 8001, Zürich, Switzerland; WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Hirschengraben 84, 8001, Zürich, Switzerland.
Introduction: Aedes-borne arboviral infections, both imported and autochthonous, are reported in Europe. We evaluated the landscape of these infections in Europe over 23 years and attempted to pre-empt the trajectory of impact of these infections in the climatic context of Aedes mosquito expansion in Europe.
Methods: This systematic review was conducted in accordance with PRISMA guidelines and registered in Prospero (CRD42023360259).
Vaccine
January 2025
Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, the Gambia; Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Australia.
Introduction: Because booster doses of pneumococcal conjugate vaccine (PCV) may be given at a similar time to yellow fever vaccine (YF), it is important to assess the immune response to YF when co-administered with PCV. This has been investigated during a reduced-dose PCV trial in The Gambia.
Methods: In this phase 4, parallel-group, cluster-randomized trial, healthy infants aged 0-10 weeks were randomly allocated to receive either a two-dose schedule of PCV13 with a booster dose co-administered with YF vaccine at age 9 months (1 + 1 co-administration) or YF vaccine administered separately at age 10 months (1 + 1 separate) or the standard three early doses of PCV13 with YF vaccine at age 9 months (3 + 0 separate).
Nat Microbiol
January 2025
Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!