Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel(1) that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of π-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265796 | PMC |
http://dx.doi.org/10.4161/chan.5.6.18354 | DOI Listing |
J Biochem
December 2024
Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
Nuclear pore complexes (NPCs) act as gateways across the nuclear envelope for molecular transport between the nucleus and the cytoplasm in eukaryotes. NPCs consist of several subcomplexes formed by multiple copies of approximately 30 different proteins known as nucleoporins (Nups). In the fission yeast Schizosaccharomyces pombe, the NPC structure is unique, particularly in its outer ring subcomplexes, where the cytoplasmic and nucleoplasmic outer rings are composed of distinct sets of proteins.
View Article and Find Full Text PDFNeuron
December 2024
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China. Electronic address:
PIEZO1 is a mechanically activated cation channel that undergoes force-induced activation and inactivation. However, its distinct structural states remain undefined. Here, we employed an open-prone PIEZO1-S2472E mutant to capture an intermediate open structure.
View Article and Find Full Text PDFRSC Adv
December 2024
Inner Mongolia Key Laboratory of New Materials and Surface Engineering, School of Materials Science and Engineering, Inner Mongolia University of Technology Hohhot 010051 China
This study utilizes discarded tree leaves as a substrate to synthesize biomass porous carbon nanosheets (PCNS) through high-temperature carbonization and pore-forming treatment, followed by functional modification using carboxymethyl chitosan (CMCS) and the corrosion inhibitor 8-hydroxyquinoline (8-HQ). The functionalized PCNS fillers were incorporated into water-based epoxy (WEP) coatings to enhance corrosion resistance. Electrochemical impedance spectroscopy (EIS) testing showed that after 60 days, WEP/PCNS@CMCS@8-HQ exhibited a low-frequency impedance of 1.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
The development of electrocatalysts for the oxygen evolution reaction (OER) is one of the most critical issues for improving the efficiency of electrochemical water-splitting, which can produce green hydrogen energy without CO emissions. This review outlines the advances in the precise design of inorganic- and organic-based porous electrocatalysts, which are designed by various strategies, to catalyze the OER in the electrolytic cycle for efficient water-splitting. For developing high-performance electrocatalysts with low overpotentials, it is important to design a chemical composition that optimizes binding energy for an intermediate in the OER and allows the easy access of reactants to active sites depending on the porosity of electrocatalysts.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Adaptive Supramolecular Nanosystems Group, University of Montpellier, Institut Européen des Membranes, ENSCM-CNRS, UMR5635, Place E. Bataillon CC047, Montpellier 34095, France.
Aquaporins (AQPs) are natural proteins that can selectively transport water across cell membranes. Heterogeneous H-bonding of water with the inner wall of the pores of AQPs is of maximal importance regarding the optimal stabilization of water clusters within channels, leading to selective pore flow water transport against ions. To gain deeper insight into the water permeation mechanisms, simpler artificial water channels (AWCs) have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!