Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO₂) to earthworms (Eisenia fetida).

J Environ Monit

Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Box 41163, Lubbock, TX 79409-1163, USA.

Published: December 2011

An increase in nanomaterial applications will likely lead to an increased probability of environmental exposures, raising concerns regarding the safety of these materials. Recent studies have indicated that manufactured nanomaterials, such as metal oxides, have the potential to be harmful to aquatic and terrestrial organisms. The majority of nano-metal oxide research addressing potential toxicological issues has been focused in aquatic environments with very little terrestrial data. This study characterized the acute and reproductive toxicity of zinc oxide (ZnO) and titanium dioxide (TiO(2)) to earthworms (Eisenia fetida) in a terrestrial system. Following a 14 d exposure, nano-sized ZnO on filter paper was acutely toxic to E. fetida, while nano-sized TiO(2) did not exhibit acute toxicity. In contrast, neither nano-sized ZnO nor TiO(2) exhibited acute toxicity to earthworms in sand. Both nano-sized ZnO and TiO(2), following a 4 week exposure, caused reproductive effects in earthworms in artificial soil. Overall, nano-sized ZnO exhibited greater toxicity than nano-sized TiO(2) in Eisenia fetida.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1em10497gDOI Listing

Publication Analysis

Top Keywords

nano-sized zno
16
eisenia fetida
12
acute reproductive
8
reproductive toxicity
8
toxicity nano-sized
8
metal oxides
8
earthworms eisenia
8
nano-sized tio2
8
acute toxicity
8
zno tio2
8

Similar Publications

The use of bioactive compounds in plants as reducing, stabilizing, and capping agents in nanoparticle manufacturing is an exceptionally eco-friendly approach. This work used rosehip seed extract, acquired by automatic solvent extraction, in the microwave-assisted green production of zinc oxide nanoparticles (ZnO NPs). The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of the extracted materials and nanoparticles were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays.

View Article and Find Full Text PDF

High-permeance nanocellulose/ZnO hybrid membranes with photo-induced anti-fouling performance for wastewater purification.

Carbohydr Polym

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Article Synopsis
  • * The addition of ZnO NPs improved the membrane's roughness and created nanochannels, resulting in an impressive water permeance of 5439.7 L·m·h·bar and effective rejection of particles larger than 20 nm and macromolecules over 100 kDa.
  • * The membrane's combination of superoleophobicity and photocatalytic self-cleaning capabilities addressed fouling issues, thus providing a promising method for treating organic wastewater with high filtration efficiency and performance.
View Article and Find Full Text PDF

The toxicity of nano-sized ZnO particles (nZnO) was evaluated and compared to that of their micro-sized counterparts (mZnO) using an integrative approach to investigate the mechanism of toxicity, utilizing duckweed (Lemna minor) as plant model. Following 7 days of exposure to nZnO or mZnO (2.5, 5, 25, and 50 mg L) growth rate, photosynthesis, oxidative stress, and genotoxicity parameters have been determined in duckweed.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO-NPs) have provided promising potential in the biomedical field, including the ability to overcome various health problems. Diosgenin is used to treat multiple health disorders but has very low solubility in water. Using ZnO-NPs as a diosgenin delivery vehicle was expected to increase the solubility of diosgenin, which would affect its bioavailability.

View Article and Find Full Text PDF

BaTiO-Bi(Zn,Ti)O (BT-BZT) ceramics have been used as capacitors due to their large dielectric permittivity and excellent temperature stability and are good candidates for lead-free materials for electrocaloric and energy storage devices. However, BT-BZT ceramics often suffer from inferior properties and poor reproducibility due to heterogeneous compositional distribution after calcination and sintering. In this work, (1-)BT-BZT ceramics ( = 0~0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!