DNA G-quadruplex is an attractive drug target for anticancer therapy. Most G-quadruplex ligands have little selectivity, due to π-stacking interaction with common G-tetrads surface. Thanks to the varieties of G-quadruplex grooves, the groove-binding ligand is expected to create high selectivity. Therefore, developing novel molecular geometries that target G-quadruplex groove has been paid growing attention. In this work, steroid FG, a special nonplanar and nonaromatic small molecule, interacting with different conformations of G-quadruplexes has been studied by molecular docking and molecular dynamics simulations. The results showed the selectivity of the hydrophobic group of steroid FG for the wide groove of antiparallel G-quadruplex. The methyl groups on the tetracyclic ring of steroid represent the specific binding ability for the small hydrophobic cavity formed by reversed stacking of G-tetrads in antiparallel G-quadruplex groove. This work provides new insight for developing new classes of G-quadruplex groove-binding ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.09.125DOI Listing

Publication Analysis

Top Keywords

small molecule
8
g-quadruplex
8
g-quadruplex grooves
8
molecular docking
8
docking molecular
8
g-quadruplex groove
8
antiparallel g-quadruplex
8
molecular
5
identification nonplanar
4
nonplanar small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!