Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cartilage loading is associated with the onset and progression of osteoarthritis and cell death may play an important role in these processes. Although much is known about cell death in joint impact loading, there is no information on joints loaded by muscular contractions. The aim of this study was to evaluate the influence of muscle generated eccentric and concentric submaximal joint loading on chondrocyte viability. We hypothesised that eccentric muscle activation leads to increased cell death rates compared to concentric loading and to controls.
Methods: 16 rabbits received either 50 min of uni-lateral, cyclic eccentric (n=8) or concentric (n=8) knee loading. Muscle activation for these dynamic conditions was equivalent to an activation level that produced 20% of maximum isometric force. Contralateral joints served as unloaded controls. Cell viability was assessed using confocal microscopy.
Findings: Eccentric contractions produced greater knee loading than concentric contractions. Sub-maximal contractions caused a significant increase in cell death in the loaded knees compared to the unloaded controls, and eccentric loading caused significantly more cell death than concentric loading.
Interpretation: Cyclic sub-maximal muscle loading of the knee caused increased chondrocyte death in rabbits. These findings suggest that low levels of joint loading for prolonged periods, as occurs in endurance exercise or physical labour, may cause chondrocyte death, thereby predisposing joints to degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiomech.2011.09.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!